**Fabrication of whispering gallery mode cavities using crystal growth** <sup>o</sup>Hiroshi Kudo<sup>1</sup>, Yohei Ogawa<sup>1</sup>, Takasumi Tanabe<sup>1</sup>, and Atsushi Yokoo<sup>2, 3</sup> Keio Univ.<sup>1</sup>, NTT Basic Research Labs.<sup>2</sup>, NTT Nanophotonics Center<sup>3</sup> E-mail: tnb@phot.elec.keio.ac.jp

#### Abstract

We fabricated whispering gallery mode (WGM) cavities made of crystalline material using a laser-heated pedestal growth (LHPG) method. Q -factor of our hexagonal sapphire resonator was  $8.5 \times 10^3$ , which can be increased according to our numerical analysis.

# Background

```
Various applications of high - Q microcavities
•High-Q microcavities are used for sensing, signal processing and optical comb generations.<sup>[3]</sup>
                                         P<sub>in</sub>: input power
    Q = \omega_0 \frac{U_{cav}}{P_{in}}
                                         U_{cav}: energy stored in cavity
                                                             [1] F. Vollmera, S. Arnold, and D. Kengb, PNAS 105, 2070120704S (2008)
    photon density \propto Q/V
                                                             [2] Takasumi Tanabe, et. al, Appl. Phys. Lett. 87, 151112 (2005)
```





#### [3] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332 555-559 (2007)



- •We need to develop a novel method that can fabricate small WGM crystalline cavity with smooth surface.
- •We apply laser heated pedestal growth (LHPG), which has been used for fabricating fiber laser.

## **Experimental setup**



 $CO_2$  laser power =  $3.4 \sim 3.7$  W Power density on molten zone  $= 7.94 \times 10^{8} (W/m^{2})$  (laser power = 3.7 W)

Velocity pulled upward (normal) Seed rod: 0.12 mm/min Feed rod: 0.72 mm/min Velocity pulled upward (microcavity fabrication) Seed rod: 0.12 mm/min Feed rod: 0.36 mm/min

Material: sapphire

## **Modified laser heated pedestal growth (LHPG)**



Q-fac 10 20 10  $8.5 \times 10^{3}$ r (µm



By changing  $v_{rate}$ , we can fabricate a bulge, which is used as a WGM microcavity.



#### Conclusion

to acheive higher Q.

• We developed a new method to fabricate WGM cavitis by using LHPG method and achived a *Q*-factor of  $8.5 \times 10^3$ .

•We showed that higher Q can be achieved by smoothing the curvature radius of the edges.

### **Future directions**



