Tanabe Photonic Structure Laboratory

Keio University, Japan

Frontiers in Optics 2012, Rochester, NY 10_16 FTu4A.5 Silicon-based Nano-photonic Structures

Polygonal silica toroidal microcavity for easy and stable coupling with waveguides

Takumi Kato, Wataru Yoshiki, Yohei Ogawa and Takasumi Tanabe

Department of Electronics and Electrical engineering, Faculty of Science and Technology, Keio University, Japan

総務省 Ministry of Internal Affairs and Communications Strategic Information and Communications R&D Promotion Programme (SCOPE), from the Ministry of Internal Affairs and Communications

TORAY Toray Science and Technology Grant

Keio University's Program for the Advancement of Next Generation Research Projects

- 1. Background
 - ✓ Silica toroidal microcavity

✓ Barriers for practical application

- Fabrication process for polygonal silica toroid
 ✓Anisotropic etching for silicon
- Mode analysis using 2D-FDTD simulation
 ✓WG-like modes of a polygonal cavity
- 4. Experimental result
- 5. Summary

1. Background

✓ Silica toroidal microcavity
✓ Barriers for practical application

- Fabrication process for polygonal silica toroid
 ✓Anisotropic etching for silicon
- Mode analysis using 2D-FDTD simulation
 ✓WG-like modes of a polygonal cavity
- 4. Experimental result
- 5. Summary

Silica toroid microcavity

D. K. Armani *et al.*, Nature **421**, 925 (2003). Application

- ✓ Optical frequency comb source
- ✓ Single molecule detection
- ✓ Third nonlinear effect

High Q and small V is required

Advantage

✓ Ultra high-Q Q ≈ 1.0 × 10⁸
 ✓ Small mode volume V
 ✓ Silica and fiber couple well
 ✓ Silicon wafer is low cost

Disadvantage

✓ Must use tapered fiber

Vulnerable to vibrations

Coupling light to WGM cavity

Microcavity design for robust coupling : Non-circular structure

Racetrack type

Long coupling length \checkmark

Polygon type

Multiple flat sidewalls for coupling

C. Li et al., IEEE J. Sel. Top. Quantum Electron. **12**, (2006). 6

Tanabe Photonic Structure Laboratory

Keio University, Japan

Motivation

Need for an ultrahigh-Q cavity that is robust as regards mechanical vibrations for practical applications

In silicon microrings

Developing a fabrication method for changing the shape of silica toroid microcavity

- 1. Background
 - ✓ Silica toroidal microcavity
 - ✓ Barriers for practical application
- 2. Fabrication process for polygonal silica toroid
 ✓Anisotropic etching for silicon
- 3. Mode analysis using 2D-FDTD simulation
 ✓WG-like modes of a polygonal cavity
- 4. Experimental result
- 5. Summary

Heat profile at laser reflow

Silica toroid fabrication process

The shape of the SiO₂ toroid depends on the shape of the Si post because the post works as heatsink during the laser reflow

Thermal conductivity(300 K)Si: 150 $[W \cdot m^{-1} \cdot K^{-1}]$ SiO_2 : 1.74

id

Fabricating polygonal silica toroid

Conventional method

Proposed method

KOH etching, 48%, 4h 30min

Problem: Undercut is too small

 \checkmark XeF₂ gas dry etching : isotropic etchant

✓ KOH wet etching : anisotropic etchant

Using only KOH is not enough...

Fabricating polygonal silica toroid

To obtain sufficient undercut to fabricate a polygonal silica toroid, we used a combination of isotropic and anisotropic etching for sacrificial etching

- **Fabrication flow** •
 - 1. Prepare a substrate after photolithography
 - 2. Use HNA wet etching (isotropic) for 30 seconds □ HF(48%): Nitric(69%): Acetic(99%) acids = 3 :5 :3
 - 3. Use KOH wet etching (anisotropic) for 3 hours
 - □ KOH(48%), Thermal control
 - 4. Use CO_2 laser for reflow process **D** 14 W, 100 ms, focal length 38.1 mm

SiO₂ patterning after photolithography

30 seconds

3:5:3 HNA etching KOH 48% etching 3 hours

SEM image of silica toroid after laser reflow

- 1. Background
 - ✓ Silica toroidal microcavity
 - ✓ Barriers for practical application
- Fabrication process for polygonal silica toroid
 ✓Anisotropic etching for silicon
- 3. Mode analysis using 2D-FDTD simulation
 ✓WG-like modes of a polygonal cavity
- 4. Experimental result
- 5. Summary

Mode analysis of polygonal silica toroid

Coupling coefficient of each part

- 1. Background
 - ✓ Silica toroidal microcavity
 - ✓ Barriers for practical application
- Fabrication process for polygonal silica toroid
 ✓Anisotropic etching for silicon
- Mode analysis using 2D-FDTD simulation
 ✓WG-like modes of a polygonal cavity
- 4. Experimental result
- 5. Summary

Optical measurement

- We fabricated a polygonal silica toroid using a combination of isotropic and anisotropic etching for sacrificial etching
- We designed a polygonal shape, which enabled to control the coupling by moving the fiber to the corner or side wall
- We suppressed of over-coupling even when we brought the fiber into contact with the surface.
- Q = 3000 is demonstrated

Thank you very much

 Reference
 T. Kato, W. Yoshiki, R. Suzuki and T. Tanabe,
 "Octagonal silica toroidal microcavity for controlled optical coupling," Appl. Phys. Lett. **101**, 121101 (2012)