JTu4A.44 Octagonal toroid microcavity for mechanically robust coupling with optical fiber

<u>Ryo Suzuki</u>, Takumi Kato, and *Takasumi Tanabe (*E-mail: takasumi@elec.keio.ac.jp) Faculty of Science and Technology, Keio University, Japan

Abstract

Critical coupling and mechanically robust coupling between a whisperinggallery mode and a tapered fiber is simultaneously demonstrated by using an octagonal toroid microcavity with a theoretical Q of 8.8×10^6 and an experimental value of 4.3×10^4 .

Background: High-*Q* **optical cavity**

Photonic Crystal	Silicon Microring	Silica Toroid	Crystalline

FDTD simulation (Mode calculation)

w/o waveguide ($Q = 8.8 \times 10^6$)

w/ waveguide differently touched to the surface

	H 420 nm (=a)	(A) 5 um	60 µm	
<i>Q</i> -factor	~ 10 ⁶	~ 10 ⁵	> 10 ⁸	> 10 ¹⁰
Mode volume	$\sim 10^{-1} \mu m^3$	$\sim 10 \ \mu m^3$	$\sim 10^3 \ \mu m^3$	$\sim 10^5 \ \mu m^3$
Integration	0	Ô	0	Δ
T. As quan	sano et al., IEEE j. sel. top. etum electron. 12 , 1123 (2006).	A. Griffith <i>et al.</i> , <i>Opt. Express</i> 20 , 21342 (2012).	D. Armani <i>et al., Nature</i> 421 , 925 (2003).	I. Grudinin <i>et al.</i> , <i>Phys. Rev. A</i> 74 , 063806 (2006).

High *Q*-factor optical cavities are used for sensing, frequency comb generation, opto-mechanics, etc.

Large evanescence: Strong coupling (κ : high) Small evanescence: Small coupling (κ : low)

 $Q_{\text{load}}^{-1} = Q_{\text{unload}}^{-1} + Q_{\text{coup}}^{-1}$

 Q_{load} : Loaded Q (w/ waveguide) Q_{unload} : Intrinsic Q (w/o waveguide) Q_{coup} : Coupling $Q (= \omega / \kappa^2)$

Different coupling can be obtained \Rightarrow by changing the contact point.

T. Kato et al., Appl. Phys. Lett. 101, 121101 (2012).

Spectrum measurement method

Experiment: Measurement results

Background: Optical coupling

To obtain maximum coupling efficiency (critical coupling), we need sub-µm gap control between the cavity and the fiber.

	Large gap	Fiber in contact
mode perturbation	small (good)	large
mechanical robustness	low	high (good)

w/ waveguide

Motivation

Design the cavity shape

to achieve critical coupling to achieve mechanical robustness

Fabrication

Gap distance vs. Transmittance

Comparing with gap distances @ critical coupling

> Side-wall coupling lower κ Corner coupling higher κ

Transmittance spectrum (Fiber in contact: gap = 0 nm)

Comparing with *Q*-factors (resonance wavelength \blacklozenge)

> Side-wall coupling Qload = 2.2×10^4

- Circular toroid After anisotropic etching
- Octagonal toroid

Other fabrication method

Using an octagonal silica disk, we do not need anisotropic etching.

After isotropic etching

Octagonal toroid

Corner coupling $Q_{\text{load}} = 6.3 \times 10^3$

Conclusion

We designed the coupling κ by making WGM cavities octagonal. Higher κ is obtained for corner coupling and lower κ is obtained for side-wall coupling. The coupling is closer to the critical coupling even when we touch the fiber to the surface of the cavity.

Acknowledgement

Strategic Information and Communications R&D Promotion Program (SCOPE), from the Ministry of Internal Affairs and Communications of Japan

The Canon Foundation