

OPTOMECHANICAL WAVEGUIDE SYSTEM FOR SWITCHING TELECOM LIGHT **Tomohiro Tetsumoto and Takasumi Tanabe**

Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Japan

Abstract

- \checkmark We numerically study an optomechanical waveguide switching system based on silica zipper cavity.
- \checkmark We show the optical and mechanical properties of silica zipper cavity.
- \checkmark Due to the 130-nm deformation of the cavity, over 15-dB extinction ratio is obtained.

Background : Cavity optomechanics and Optical MEMS

Cavity optomechanics			Optical MEMS switch	
Principle	Toroid cavity	Zipper cavity	Add-drop switch	Controlling the resonance
	(Laser Cooling)	(Squeezed light)	Actuator (a)	of the optical cavity

To inspect the possibility of the optomechanical switch.

Induced optical force deform the cavity and the propagation direction of light is switched.

Light wavelength of the system

Bragg/mirro Wave number k

Problem of using nanobeam cavity as a waveguide

Ultra-broad wavelength range is demanded \Rightarrow silica

Cavity resonant wavelength: 1550 nm Signal light wavelength: 1580 nm

Cavity resonant wavelength: 800 nm Signal light wavelength: 1550 nm

✓ Strong optomechanical coupling Easy to make on-chip

✓ Resonant light wavelength : 770 nm (infrared light). Signal light wavelength : 1550 nm (telecom light). \checkmark

Other advantages of confining the visible light ✓ Small size and high mechanical frequency ✓ High photon energy

Optical and Mechanical design of the cavity

Analysis of the light propagation

Mechanical deformation

Computing model

Result Initial state : Gap = 197 nm \Rightarrow ER= 16.3 dB Computing model

 E_1, E_2, E_3 are the sampling point of the energy.

Definition of extinction ratio (ER)

$$ER = |10 \log \left(\frac{E_1}{E_2}\right) - 10 \log \left(\frac{E_1}{E_3}\right)|$$

We apply the boundary load to the center of the cavity and compute the deformation of stationary state.

Result

About 130-nm deformation is obtained by **1.5 W input power**.

Conclusion

- We shows the optical and mechanical properties of silica zipper cavity. \checkmark The computing results show that 1.5-W input power deform the cavity 130 nm and then over 15-dB extinction ratio is obtained.
- To reduce the driving power, optimization of the structure and light propagation model is required.

DEPARTMENT OF ELECTRONICS & ELECTRICAL ENGINEERING

