

The 5th Advanced Lasers and Photon Sources (ALPS'16) ALPS1-3, May 17, 2016

Effects with Kerr comb in silica toroid microcavity: Raman scattering and third harmonic generation

<u>Ryo Suzuki</u>, Takumi Kato, Akitoshi Chen-Jinnai, Tomoya Kobatake, Shun Fujii and Takasumi Tanabe

> Faculty of Science and Technology, Keio University

> > JSPS KAKENHI under Grant 16J04286, 15H05429.

Background

2

Kerr frequency comb

Kerr comb

Microcavity

- ✓ Small size & Low cost
- ✓ High repetition rate (10GHz-1THz)
- ✓ Large bandwidth
- \checkmark Low threshold power

Threshold pump power of four-wave mixing

$$P_{\rm threshold} \propto V/Q^2$$

V : Mode volume *Q* : Quality factor

Ti:Sapphire laser

http://www.mpq.mpg.de/~haensch/comb/index.html

Fiber laser

https://www.aist.go.jp/index_ja.html

Large size & High cost

Conventional frequency comb sources

Background

3

Generation scheme & Effects with Kerr com

Cascaded FWM occurs by pumping the microcavity with CW laser

The strong optical confinement simultaneously causes other effects

Cavity optomechanics

Raman scattering

Typical experimental result

Raman scattering results from the delayed molecular response of the host medium

Silica: $\Omega_R/2\pi \sim 13 \text{ THz}$

Raman gain spectrum 1.2 $\lambda_p = 1 \mu m$ 1.0 RAMAN GAIN (x 10⁻¹³ m/W) 0.8 0.6 0.4 0.2 0 6 12 24 30 36 18 42 FREQUENCY SHIFT (THz)

G. Agrawal, "Nonlinear Fiber Optics", Academic Press

Motivation

Microcavity with $\chi^{(3)}$ causes Kerr and/or Raman effects when the cavity is pumped above a threshold power.

However, these effects have almost been investigated separately.

Nonlinear Schrödinger equation

$$t_{\rm R} \frac{\partial E}{\partial t} = \left\{ -\frac{1}{2} (\alpha_{\rm i} + \alpha_{\rm c}) - i\delta + iL \sum_{k \ge 2} \frac{\beta_{k(m)}}{k!} \left(i \frac{\partial}{\partial \tau} \right)^k \right\} E + i\gamma L N + \sqrt{\alpha_{\rm c}} E_{\rm in}$$

cavity loss detuning dispersion coupling
$$N = |E|^2 E$$

Kerr

We added Raman effect to the simulation model of Kerr comb

N + (Raman effect)

Calculation with Raman

Nonlinear Schrödinger equation + Raman effect

 $t_{\rm R}$: roundtrip time, δ_0 : detuning, β_k : kthorder dispersion, γ : nonlinear coefficient f_R : contribution of delayed Raman response, h_R : Raman response function

Raman scattering (1)

7

Calculation results

 $Q_c \propto \alpha_c^{-1}$

Coupling control enables to generate FWM or Raman scattering selectively.

Experimental results

Stimulated Raman scattering had two types of formation. However, we could not reveal the condition to decide the type.

Calculation with Raman and XPM (two modes)

$$t_{\rm R} \frac{\partial E_{(1)}}{\partial t} = \left\{ -\frac{1}{2} \left(\alpha_{i(1)} + \alpha_{c(1)} \right) - i \delta_{(1)} + i L \sum_{k \ge 2} \frac{\beta_{k(1)}}{k!} \left(i \frac{\partial}{\partial \tau} \right)^k \right\} E_{(1)} + i \gamma_{(1)} L N_{(1)} + \sqrt{\alpha_{c(1)}} E_{\rm in}$$
$$t_{\rm R} \frac{\partial E_{(2)}}{\partial t} = \left\{ -\frac{1}{2} \left(\alpha_{i(2)} + \alpha_{c(2)} \right) - i \delta_{(2)} + i L \sum_{k \ge 2} \frac{\beta_{k(2)}}{k!} \left(i \frac{\partial}{\partial \tau} \right)^k \right\} E_{(2)} + i \gamma_{(2)} L N_{(2)}$$

$$N_{(1)} = (1 - f_{\rm R}) \left(\left| E_{(1)} \right|^{2} + 2B \left| E_{(2)} \right|^{2} \right) E_{(1)} + f_{\rm R} \left\{ \begin{array}{c} E_{(1)} \int_{-\infty}^{\infty} h_{\rm R}(t') \left| E_{(1)}(t - t') \right|^{2} dt' \\ + E_{(1)} B \int_{-\infty}^{\infty} h_{\rm R}(t') \left| E_{(2)}(t - t') \right|^{2} d + E_{(2)} B \int_{-\infty}^{\infty} h_{\rm R}(t') E_{(1)}(t - t') E_{(2)}^{*}(t - t') dt' \right\} \\ N_{(2)} = (1 - f_{\rm R}) \left(\left| E_{(2)} \right|^{2} + 2B \left| E_{(1)} \right|^{2} \right) E_{(2)} + f_{\rm R} \left\{ \begin{array}{c} E_{(2)} \int_{-\infty}^{\infty} h_{\rm R}(t') \left| E_{(2)}(t - t') \right|^{2} dt' \\ + E_{(2)} B \int_{-\infty}^{\infty} h_{\rm R}(t') \left| E_{(1)}(t - t') \right|^{2} dt + E_{(1)} B \int_{-\infty}^{\infty} h_{\rm R}(t') E_{(2)}(t - t') E_{(1)}^{*}(t - t') dt' \right\} \end{array} \right\}$$

B: mode overlapping of different modes

When the highest Q mode (fundamental mode) is pumped, mode family of pump and Raman scattering is always the same

Experimental results

Highest Q mode (fundamental mode) was pumped

Low Q mode was pumped

Third harmonic generation (THG)

THG allows emission at three times the pump frequency

Experimental setup TLS EDFA FPC Silica toroid Q ~ 10⁷ VIS-OSA IR-OSA

11

Previous research of THG & Motivation

Motivation of our research:

Can Kerr comb cause (THG and) sum frequency generation by pumping with only one CW light?

Experimental result

Kerr comb assists the generation of visible emission having multiple wavelengths with equal spacing

THG

13

In order to generate sum frequency generation

- Previous research

Pumping by two CW lights

- This research

Pumping by one CW light Kerr comb assists the generation of visible emission having multiple wavelengths with equal spacing

Conclusion

Raman scattering

- Model with Raman factor
 - Coupling control enables to generate FWM or Raman scattering selectively.
- ② Model with Raman and XPM factors for two modes Mode family of pump and Raman scattering is always the same when the highest Q (fundamental) mode is pumped.

THG

③ Kerr comb assists the generation of visible emission having multiple wavelengths with equal spacing

