

Influence of cavity optomechanics on Kerr frequency combs

<u>Ryo Suzuki</u>, Akitoshi Jinnai, Takuma Nagano, Tomoya Kobatake, Takumi Kato and Takasumi Tanabe

> Faculty of Science and Technology, Keio University

Background

2

Kerr frequency comb

Kerr comb

Microcavity

- ✓ Small size & Low cost
- ✓ High repetition rate (10GHz-1THz)
- ✓ Large bandwidth
- ✓ Low threshold pump

Threshold pump power of four-wave mixing

$$P_{\rm threshold} \propto V/Q^2$$

V : Mode volume *Q* : Quality factor

Ti:Sapphire laser

http://www.mpq.mpg.de/~haensch/comb/index.html

Fiber laser

https://www.aist.go.jp/index_ja.html

Large size & Expensive

Conventional frequency comb sources

Mode locked pulse in microcavities

Cascaded FWM occurs by pumping the microcavity with CW laser

Mode locking was demonstrated using Si_3N_4 and MgF_2 microcavities

T. Herr et al., Nat. Photon. 6, 480 (2012)

Motivation

Cavity optomechanical vibration

Can observe optomechanical vibration by measuring RF signal

Blue detuning Amplify optomechanical vibration

Red detuning Suppress optomechanical vibration

Experiment

6

Kerr comb generation with single-FSR

Experiment

7

Mode locked pulse with single-FSR

Transform limited pulse (TLP) of single-FSR comb was generated

Simulation

8

Simulation of temporal behavior

Previous research

Slowly varying field amplitude in microcavity $\mathbf{a}(t)$: $\frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t) \left(\frac{\omega_0}{2Q_t} - i \left(\omega_p - \omega_0 - \mathbf{x}(t) \frac{\omega_0}{R} \right) \right) + s_{in} \sqrt{\frac{\omega_0}{Q_c}} FSR$ resonance modulation Displacement in radial direction $\mathbf{x}(t)$: $\frac{d^2 \mathbf{x}(t)}{dt^2} + \frac{\Omega}{Q_m} \cdot \frac{d\mathbf{x}(t)}{dt} + \Omega^2 \mathbf{x}(t) = \frac{2\pi n}{m_{eff}c} |\mathbf{a}(t)|^2$

Transmittance with high power pump

Transmittance with high power pump

Experiment

Kerr comb generation with multi-FSR

Conclusion

- Mode locked pulse with single and multi FSR was generated from a silica toroid microcavity though "soliton step" was not observed.
- Kerr comb at low noise state had narrow linewidth of 200 kHz, which is same order as that of pump laser.
- Local minimum of transmittance shows that resonance modulation by optomechanical vibration gets over the detuning.

Acknowledgement

- Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, KAKEN #15H05429
- Ishii-Ishibashi Fund, Keio University, Japan