

Soliton pulse formation in a calcium fluoride whispering gallery microcavity without frequency sweeping

Electronics and Electrical Engineering, Keio University, Japan
 Department of System Design Engineering, Keio University, Japan

Hiroki Itobe¹, Tomoya Kobatake¹, Yosuke Nakagawa¹, Takumi Kato¹, Yuta Mizumoto², Hiroi Kangawa², Yasuhiro Kakinuma², and <u>Takasumi Tanabe¹</u>

takasumi@elec.keio.ac.jp

June 8, 2016, 9:00~9:15

Copyright © Keio University

Background

Optical Kerr frequency comb

Kerr comb Microcavity

- ✓ Small & Inexpensive
- ✓ High repetition rate (10GHz-1THz)
- ✓ Large bandwidth
- ✓ Low threshold pump

Threshold pump power for four-wave mixing

$$P_{\rm threshold} \propto V/Q^2$$

V : Mode volume *Q* : Quality factor

Conventional frequency comb sources Ti:Sapphire laser Fiber laser

http://www.mpq.mpg.de/~haensch/comb/index.html

https://www.aist.go.jp/index_ja.html

Background

Soliton pulse generation w/ wavelength sweeping

By utilizing negative thermo-optic (TO) effect,

- Can we obtain soliton pulse w/o frequency sweeping?

By utilizing ultra precision machining,

- Can we fabricate a dispersion controlled CaF₂ microcavity?

Experiment

Thermo-opto-mechanical oscillation

(a)

- 1.

- 2.

- 3.

Model describing nonlinearities in CaF₂

Copyright © Keio University 6

Without thermal effects (only Kerr)

Copyright © Keio University | 7

Time (pe)

Turing pattern

Unstable

With positive TO effect (SiO₂ microcavity)

With negative TO effect (CaF₂ microcavity)

Resonator model

I. S. Grudinin *et al.*, Optica **2**, 221 (2015)

```
dn/dT = -1.15 \times 10^{-5}
Input = 70 mW
Q_{couple} = 2 \times 10^{7}
Q_{int} = 2 \times 10^{7}
radius = 500 µm
```

Easy to obtain soliton pulses by reverse scan.

Soliton state w/o wavelength scan

Fabrication of CaF₂ WGM cavity w/ cutting

Trapezoid shaped WGM microcavity

Dispersion measurement

- Anomalous dispersion obtained

Obtained soliton pulse without wavelength sweeping by using **negative TO effect** of CaF₂.

Fabricated a dispersion controlled CaF₂ microcavity

