JTu5A.48 Analysis of effect of interaction between transverse modes on Kerr frequency comb generation Takumi Kato, Tomoya Kobatake, Ryo Suzuki and Takasumi Tanabe Electronics and Electrical Engineering, Keio University, Japan (takasumi@elec.keio.ac.jp)

Abstract

We numerically studied the effect of the interaction between transverse modes on Kerr frequency comb generation. We expanded the Lugiato-Lefever mode to consider the effect of cross-phase modulation (XPM). We found that XPM can work for forming solitons in both modes, TE and TM modes. This means dual solitons can be achieved in one microcavity.

Background: Kerr frequency comb generation

Simulation Method: Transverse modes interaction

- S : Input power
- r: Round trip number β : Dispersion parameter γ : Nonlinear parameter
- t_R : Round trip time
- δ : Detuning
- M: Mode number

- $t_R \frac{\partial E_{TE}}{\partial r} = \left(-\alpha_{TE} i\delta_{TE} + iL\sum_{k>2} \frac{\beta_{k_TE}}{k!} \left(i\frac{\partial}{\partial T}\right)^k\right) E_{TE} + i\gamma_{TE}L(|E_{TE}|^2 + PB|E_{TM}|^2)E_{TE} + \sqrt{\kappa_{TE}}S_{TE}$ $t_R \frac{\partial E_{TM}}{\partial r} = \left(-\alpha_{TM} - i\delta_{TM} + dLi \frac{\partial}{\partial T} + iL \sum_{l \ge 2} \frac{\beta_{k_TM}}{k!} \left(i \frac{\partial}{\partial T} \right)^k \right) E_{TM} + i\gamma_{TM} L(|E_{TM}|^2 + PB|E_{TE}|^2) E_{TM} + \sqrt{\kappa_{TM}} S_{TM}$
- Calculate them alternatively with split-step Fourier method

To be simple,

- 1. Mode overlapping is perfect. (B=1)
- 2. Group velocity mismatch is negligible. (d=0)
- Each input is coherent. Detuning & cavity length are same.
- 3. Linear coupling is negligible (only XPM is the interaction)
- Mode interaction(XPM) coefficient **P**
- same polarization **P=2**
- orthogonal polarization P=2/3 For example,
- 1st order TE × 1st order TM: *P***=2/3**
- 1st order TE × 2nd order TE: *P***=2**

Simulation Result

Conclusion

- Modelled the XPM effect with the SSFM calculation.
- Twin mode-locked pulses can be achieved with wavelength scanning method.
- Twin mode-locked pulses move forward at the same speed due to XPM effect that works like soliton trapping.

Acknowledgement

 Ministry of Education, Culture, Sports, Science and Technology (MEXT) (KAKEN 15H05429)

Keio Program for Leading Graduate School

"Science for Development of Super Mature Society"

