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2 Kerr frequency comb

Ti:Sapphire laser Fiber laserMicrocavity

Large & Expensive
https://www.aist.go.jp/index_ja.html

𝑃𝑃threshold ∝ 𝑉𝑉/𝑄𝑄2
𝑉𝑉 ： Mode volume
𝑄𝑄： Quality factor

Threshold pump power for 
four-wave mixing

 Small & Inexpensive
 High repetition rate 

(10GHz-1THz)
 Large bandwidth
 Low threshold pump

Conventional frequency comb sourcesKerr comb
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3 Motivation
SiN microring

MgF2 bulk 
Microcavity Microcavity

w/ cavity optomechanics

?
Mode-locked pulse SiO2 microtoroidMode-locked?
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T. Herr et al., Nat. Photon. 6, 480 (2012)

+ optomechanical noise
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4 Cavity optomechanical oscillation

Can observe optomechanical oscillation
by measuring RF signal

Ω Radio frequency

Photodetector

SiO2 microtoroid
(cross section)

Mechanical
frequency Ω

(Top view) Blue-detuning
Amplify optomechanical oscillation

Red-detuning
Suppress optomechanical oscillation
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5 Experimental setup & Dispersion
Experiment

TE mode

TM mode

M = 199 196 193 190 190 187 186

－2 MHz

－5 MHz

14 MHz

4 MHz －26 MHz 2 MHz －20 MHz －42 MHz 52 MHz

85 MHz－52 MHz－1 MHz－46 MHz－33 MHzD2 / 2π

D2 / 2π

D2/2π >> 0 MHz

Anomalous
dispersion

Qi ~ 107

Qm = 2.5×103

(G
H

z)



6 Kerr comb generation with single-FSR
Optical spectrum RF signal

Experiment

RBW 1 MHz

Transmittance

350 mW pump

1-FSR

Pump scan

Multiple of 60 MHz signals were 
caused by optomechanical oscillation

RF signal disappeared

In terms of cavity optomechanics,
state-4 is into effective red-detuning



7 Autocorrelation waveform measurement

Linewidth of comb line

Experiment

0 1 2 3 4 5

0.5

1.0

 

 

4

Delay (ps)

Transform limited pulse (TLP) of single-FSR comb was generated

3

0 1 2 3 4 5

0.5

1.0

  experiment
  calculation(TLP)

 

 

3

Delay (ps)

Au
to

co
rre

la
tio

n

-200 0 200

-80

-60

-40
 

 

1500 1550 1600
-40

-20

0

20

 

 

Frequency (MHz)

RBW 1 kHzSi
gn

al
 (d

B)

-20 0 20

-80

-60

-40

 

 
(same order as that of pump and reference lasers)

1500 1550 1600
-40

-20

0

20

 

 

Frequency (MHz)

4

RBW 1 kHz

~ 200 kHz

950 GHz



8 Transmittance affected by oscillation

Transmittance

Pump scan 350 mW pump
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Resonance modulation
by optomechanical oscillation
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9 Simulation of transmittance

Cross section

Simulation
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𝒂𝒂 𝒕𝒕 2
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𝑑𝑑𝑑𝑑

= −𝒂𝒂 𝒕𝒕
𝜔𝜔0

2𝑄𝑄t
− 𝑖𝑖 𝜔𝜔p − 𝜔𝜔0 + 𝒙𝒙 𝒕𝒕

𝜔𝜔0
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+ 𝑠𝑠in

𝜔𝜔0

𝑄𝑄c
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T. Carmon et al., Phys. Rev. Lett. 94, 223902 (2005).

Simulation model

Previous research

ω0: resonance frequency, ωp: pump frequency, Qt: total Q, Qc: coupling Q,
sin: input pump field, FSR: cavity FSR, R: cavity radius, n: refractive index,,
c: speed of light, Ω: mechanical frequency, Qm: mechanical Q, meff: effective mass

Slowly varying field amplitude in microcavity 𝒂𝒂 𝒕𝒕 :

Displacement in radial direction x(t):
Optomechanical oscillation (resonance modulation)

Amplitude a(t)

Displacement x(t)



10
Effective detuning & Transmittance

with high power pump
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Kerr effect

Simulation

Optomechanical oscillation

Slowly varying field amplitude in microcavity a(t):

Out of
resonance

Out of
resonance

(average)

Minimum transmittance
at zero-detuning

Minimum transmittance
at zero-detuning

Effective 
blue-detuning Effective 

blue-detuning

Pump 350 mW

Not including
FWM process
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11 Summary

A mode-locked pulse with a single FSR was generated from a 
toroid microcavity although no “soliton step” was observed.

A Kerr comb in a low noise state had a linewidth of 200 kHz,
which is same order as that of a pump and a reference lasers.

We calculated the influence of optomechanical oscillation on 
transmittance by considering Kerr and optomechanical effects.
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