

IEEE-OMN2016 We2.3 11:45-12:15 Aug. 3. 2016

Optical nonlinear control at a very low power in ultrahigh-Q microcavity systems <u>Takasumi Tanabe</u>,

Tomohiro Tetsumoto, Hiroki Itobe, Ryo Suzuki, and Takumi Kato

takasumi@elec.keio.ac.jp

Department of Electronics and Electrical Engineering,

Keio University, Japan

Copyright © Keio University

1. Background

Various high Q microcavities

- Outline
- 1. Background & Motivation
- 2. Ultrahigh Q nanocavity w/ photolithographic Si PhC
- 3. Electro-optic modulator w/ controlled random PhC
- 4. 8-ch in-plane DWDM demux demonstration
- 5. SiO₂ / Si hybrid system
- 6. Summary

Photonic Structure Group, Keio University

Fusion of Si-photonics & Photonics crystals

Design & Simulation

►Width-modulated line defect cavity _T

^{Ly} T. Tanabe, *et al.*, Nature Photon. 1, 47 (2007).

Mechanism

- Waveguide width is large at the center
- Mode-gap confinement

Characteristics

High-Q w/ small shift of air-hole position

Proximity effect ↓

Photolithographic fabrication?

Y Ooka, *et al.*, *Sci. Rep.* **5**, 11312 (2015).

Optimized structure

 $Q = 7.1 \times 10^6$ $V = 2.4 (\lambda/n)^3$

Fabricated parameter

 $Q = 8.1 \times 10^5$ V

 $V = 1.7 \ (\lambda/n)^3$

FDTD – w/ SiO₂ cladding

Photolithographic fabrication & proximity effect 🔀

Y Ooka, et al., Sci. Rep. 5, 11312 (2015).

SEM images (effect of fabrication error)

Width-modulated line defect cavity

Max amount of shift : 9 nm

Max amount of shift : 63 nm

Width-modulated line defect cavity is robust against the proximity effect

L3 cavity

Photonic Structure Group, Keio University

Experiment: High-Q demonstration

- Outline
- 1. Background & Motivation
- 2. Ultrahigh Q nanocavity w/ photolithographic Si PhC
- 3. Electro-optic modulator w/ controlled random PhC
- 4. 8-ch in-plane DWDM demux demonstration
- 5. SiO₂ / Si hybrid system
- 6. Summary

Random photonic crystal & our motivation

1.590

"Find a way to control the randomness"

Controlling the position of the light localization

Cutoff frequency (mode gap)

Position of light localization occurs randomly in W0.98

Controlling the position of the light localization

Cutoff frequency (mode gap)

Theory & experimental result

Localization observed at desired position

Yield rate of obtaining localization

Y. Ooka, et al. Opt. Express 24, 11199 (2016).

> 80% yield obtained

Using random PhC for controlled experiment

Y. Ooka, et al. Opt. Express 24, 11199 (2016).

EO modulation achieved w/ pin structure integrated at W0.98 regime

- Outline
- 1. Background & Motivation
- 2. Ultrahigh Q nanocavity w/ photolithographic Si PhC
- 3. Electro-optic modulator w/ controlled random PhC
- 4. 8-ch in-plane DWDM demux demonstration
- 5. SiO₂ / Si hybrid system
- 6. Summary

In-plane 8ch DWDM demonstration

In-plane 8ch DWDM demonstration

- Outline
- 1. Background & Motivation
- 2. Ultrahigh Q nanocavity w/ photolithographic Si PhC
- 3. Electro-optic modulator w/ controlled random PhC
- 4. 8-ch in-plane DWDM demux demonstration
- 5. SiO₂ / Si hybrid system
- 6. Summary

Principle of cavity formation

Measurement of Q and CE of FCPC

Resonant wavelength tuning

T. Tetsumoto, et al., Opt. Express 23, 16256 (2015).

5. SiO_2 / Si hybrid system

Coupling of SiO₂ WGM microcavity w/ PhC WG (preliminary)

High-Q 1D photonic crystal microcavity with SiO₂

-18.4

Copyright © Keio University

1531.7

1531.8

24

High-Q 1D photonic crystal microcavity with SiO₂

Data to fit

1532.1

-35

1500

1520

1540

Fitting

1532.0

1531.9

Wavelength (nm)

Wavelength (nm) Highest Q PhC microcavity w/ low-n material

1560

rM like (H120°

1580

(H165° TM ref. (H120°

1600

210

180

150

Silica zipper cavity for MOMS switch

T. Tetsumoto and T. Tanabe, AIP Adv. 4, 077137 (2014)

Opto-mechanical coupling

150

Gap (nm)

Bonded mode - Anti-bonded mode

 Bonded mode Anti-bonded mode

200

250

Fabricated zipper

Switching demonstration (calc.)

g_{ow} / 2π (GHz / nm)

140 120 100

80

60 40

50

100

Photonic Structure Group, Keio University

Ultra-high Q toroidal microcavity

Kerr comb in microcavity system

Convert CW laser to ultrashort pulse train w/ >600 GHz repetition rate

Ultrahigh repetition rate pulse generation

T. Kato, et al. Jpn. J. Appl. Phys. 55, 072201 (2016). (editor's pick)

Kerr comb generation

SHG autocorrelation trace

Photonic Structure Group, Keio University

RF noise measurement (effect of cavity opto-mechanics)

Photonic Structure Group, Keio University

Wavelength scan with toroid microcavity

Photonic Structure Group, Keio University

Cavity opto-mechanics & mode-locking

Silicon technologies

- 1. Ultrahigh Q nanocavity w/ photolithographic Si PhC
- 2. Electro-optic modulator w/ controlled random PhC
- 3. 8-ch in-plane DWDM demux demonstration
- SiO₂ ultrahigh Q microcavity technologies
 - 4. Tapered fiber assisted resonance
 - 5. Kerr comb generation in silica WGM microcavity

toward SiO₂ / Si hybrid system

\bigotimes

The team

Acknowledgement

Mr. Wataru Yoshiki (PhD candidate / Leading RA) Mr. Takumi Kato (PhD candidate / Leading RA) Mr. Tomohiro Tetsumoto (PhD candidate / JSPS DC2) Mr. Ryo Suzuki (PhD candidate / JSPS DC1) Ms. Nurul Ashikin Binti Daud (PhD candidate) Mr. Yuta Ooka (M2) Mr. Itobe Hiroki (M2) Mr. Yoshihiro Honda (B4) Mr. Naotaka Kamioka (B4)

Support

Strategic Information and Communications R&D Promotion Programme (SCOPE), from the Ministry of Internal Affairs and Communications

Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, KAKEN #16K13702