

Progress In Electromagnetics Research Symposium (PIERS) [2P_13 SC3 Optical Microcavities Aug. 9, 2016]

The effect of Raman scattering in Kerr comb generation in a Silica Toroidal Microcavity

Takumi Kato, Tomoya Kobatake, Akitoshi Chen-Jinnai, Atsuhiro Hori, and <u>Takasumi Tanabe</u>

Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Japan

Copyright © Keio University

- Background & Motivation
 - Raman scattering in Kerr comb generation
- Numerical modeling
 - Simultaneous Lugiato-Lefever Equations
- Numerical results
 - Dependence on Q factor
 - Raman soliton generation
- Summary

Raman lasing in high-Q silica microcavity

- Stimulated Raman Scattering(SRS)
 - Third-order nonlinearity χ^3
 - Competing FWM process
 - Silica has broad Raman gain

D. Hollenbeck, and C. Cantrell, JOSA B 19, 2886 (2002).

- Raman lasing in high-Q silica microcavity
 - small input power (~ µW)
 - high conversion efficiency
 - Often observing Multi-mode lasing

S. Spillane, et al., Nature 415, 621 (2002).

Visible comb generation with soliton pulse

5

Broad bandwidth generation

w/o Raman comb (Input: 1545.93 nm, 0.94 W)

Raman scattering in Kerr comb generation

Motivation & objective

Motivation:

Application:

Two-comb modes have possibilities to apply dual comb applications.

Physics:

Raman scattering in Kerr comb in silica cavity is still unclear.

Objectives

 Develop a numerical model considering 2 modes interacting with Raman scattering.
 Compare numerical/experimental results

- Background & Motivation
 - Raman scattering in Kerr comb generation
- Numerical modeling
 - Simultaneous Lugiato-Lefever Equations
- Numerical results
 - Dependence on Q factor
 - Raman soliton generation
- Summary

Numerical model

Consider two modes that couple with Raman scattering

Simultaneous Lugiato-Lefever Equations

Lugiato-Lefever equations with Raman interaction

Mode 1 (pump mode)

$$t_{R} \frac{\partial E_{p}}{\partial t} = \left\{ -\frac{\alpha_{p}}{2} - \frac{\kappa_{p}}{2} - i\delta_{p} + iL \sum_{k \ge 2} \frac{\beta_{p}^{(k)}}{k!} \left(-i\frac{\partial}{\partial t} \right)^{k} \right\} E_{p} + iLN_{p} + \sqrt{\kappa_{p}}S_{\text{in}}$$

$$N_{p} = (1 - f_{R}) \left(\gamma_{p} |E_{p}|^{2} + 2\Gamma_{p} |E_{s}|^{2} \right) E_{p} + f_{R} \left\{ \begin{array}{c} \gamma_{p} E_{p} \int_{-\infty}^{\infty} h_{R}(t') |E_{p}(t - t')|^{2} dt' \\ +\Gamma_{p} E_{p} \int_{-\infty}^{\infty} h_{R}(t') |E_{s}(t - t')|^{2} dt' + \Gamma_{p} E_{s} \int_{-\infty}^{\infty} h_{R}(t') E_{p}(t - t') E_{s}^{*}(t - t') dt' \right\}$$

$$Mode 2 (Raman mode)$$

$$t_{R} \frac{\partial E_{s}}{\partial t} = \left\{ -\frac{\alpha_{s}}{2} - \frac{\kappa_{s}}{2} - iL(\beta_{s}^{(1)} - \beta_{p}^{(1)}) \left(-i\frac{\partial}{\partial t} \right) + iL \sum_{k \ge 2} \frac{\beta_{s}^{(k)}}{k!} \left(-i\frac{\partial}{\partial t} \right)^{k} \right\} E_{s} + iLN_{s}$$

$$N_{s} = (1 - f_{R}) \left(\gamma_{s} |E_{s}|^{2} + 2\Gamma_{s} |E_{p}|^{2} \right) E_{s} + f_{R} \left\{ \begin{array}{c} \gamma_{s} E_{s} \int_{-\infty}^{\infty} h_{R}(t') |E_{s}(t-t')|^{2} dt' \\ +\Gamma_{s} E_{s} \int_{-\infty}^{\infty} h_{R}(t') |E_{p}(t-t')|^{2} dt' + \Gamma_{s} E_{p} \int_{-\infty}^{\infty} h_{R}(t') E_{s}(t-t') E_{p}^{*}(t-t') dt' \right\}$$

Simultaneous Lugiato-Lefever Equations

Lugiato-Lefever equations with Raman interaction

Mode 1 (pump mode)

$$t_{R} \frac{\partial E_{p}}{\partial t} = \left\{ -\frac{\alpha_{p}}{2} - \frac{\kappa_{p}}{2} - i\delta_{p} + iL \sum_{k \ge 2} \frac{\beta_{p}^{(k)}}{k!} \left(-i\frac{\partial}{\partial t} \right)^{k} \right\} E_{p} + iLN_{p} + \sqrt{\kappa_{p}}S_{\text{in}}$$

$$N_{p} = (1 - f_{R}) \left(\gamma_{p} |E_{p}|^{2} + 2\Gamma_{p} |E_{s}|^{2} \right) E_{p} + f_{R} \left\{ \begin{array}{c} \gamma_{p} E_{p} \int_{-\infty}^{\infty} h_{R}(t') |E_{p}(t - t')|^{2} dt' \\ +\Gamma_{p} E_{p} \int_{-\infty}^{\infty} h_{R}(t') |E_{s}(t - t')|^{2} dt' + \Gamma_{p} E_{s} \int_{-\infty}^{\infty} h_{R}(t') E_{p}(t - t') E_{s}^{*}(t - t') dt' \right\}$$

 t_R : round trip α_p : intrinsic loss κ_p : external loss δ_p : detuning $\beta^{(2)}: 2^{nd}$ order dispersion L: cavity length

- N_p : nonlinear term
- S_{in}: input power
- f_R : contribution of Raman
- γ , Γ : nonlinear coefficient
- h_R : Raman response function

Simultaneous Lugiato-Lefever Equations

Lugiato-Lefever equations with Raman interaction

- t_R : round trip α_p : intrinsic loss κ_p : external loss δ_p : detuning $\beta^{(1)}$: 1st order dispersion $\beta^{(2)}$: 2nd order dispersion
- L: cavity length
- N_p : nonlinear term
- S_{in}:input power
- f_R : contribution of Raman
- γ , Γ : nonlinear coefficient
- h_R : Raman response function

$$Mode 2 (Raman mode)$$

$$t_{R} \frac{\partial E_{s}}{\partial t} = \left\{ -\frac{\alpha_{s}}{2} - \frac{\kappa_{s}}{2} - iL(\beta_{s}^{(1)} - \beta_{p}^{(1)}) \left(-i\frac{\partial}{\partial t} \right) + iL \sum_{k \ge 2} \frac{\beta_{s}^{(k)}}{k!} \left(-i\frac{\partial}{\partial t} \right)^{k} \right\} E_{s} + iLN_{s}$$

$$N_{s} = (1 - f_{R}) \left(\gamma_{s} |E_{s}|^{2} + 2\Gamma_{s} |E_{p}|^{2} \right) E_{s} + f_{R} \left\{ \begin{array}{c} \gamma_{s} E_{s} \int_{-\infty}^{\infty} h_{R}(t') |E_{s}(t-t')|^{2} dt' \\ +\Gamma_{s} E_{s} \int_{-\infty}^{\infty} h_{R}(t') |E_{p}(t-t')|^{2} dt' + \Gamma_{s} E_{p} \int_{-\infty}^{\infty} h_{R}(t') E_{s}(t-t') E_{p}^{*}(t-t') dt' \right\}$$

Supplements: nonlinear coefficient

$$\gamma = \frac{n_2 \omega}{c A_{AA}} \qquad \Gamma = \frac{n_2 \omega}{c A_{AB}}$$

 n_2 : nonlinear refractive index A_{AA} : effective mode area (self) A_{AB} : effective mode area (interaction)

$$A_{AA} = \frac{\iint |A(x,y)|^2 dx dy * \iint |A(x,y)|^2 dx dy}{\iint |A(x,y)|^4 dx dy}$$
$$A_{AB} = \frac{\iint |A(x,y)|^2 dx dy * \iint |B(x,y)|^2 dx dy}{\iint |A(x,y)|^2 |B(x,y)|^2 dx dy}$$

	Mode area (μm^2)
A_{TE00}	8.285
A_{TE01}	10.879
A_{TE02}	15.066
A_{TE00_TE01}	15.632
A_{TE01_TE02}	23.532
A_{TE02_TE00}	18.498

Parameters

Model: Silica toroid Major *R*: 50 μm Minor *R*: 4 μm FSR: 600 GHz

- Background & Motivation
 - Raman scattering in Kerr comb generation
- Numerical modeling
 - Simultaneous Lugiato-Lefever Equations
- Numerical results
 - Dependence on Q factor
 - Raman soliton generation
- Summary

Dependence on Q factor

$P_{\rm in} = 100 \text{ mW}$ $\delta_p = 1 \times 10^{-4}$

Comparison with the experimental result

Three mode interaction

□ Three mode interaction should be considered in this system. (ex: TE02→TE01→TE00)

- Background & Motivation
 - Raman scattering in Kerr comb generation
- Numerical modeling
 - Simultaneous Lugiato-Lefever Equations
- Numerical results
 - Dependence on Q factor
 - Raman soliton generation
- Summary

Raman soliton generation

Raman soliton generation

- Chaotic condition (too high-Q)
 Pump mode: TE_{02} Raman mode: TE_{01} $Q_{TE_{02}} = 7 \times 10^6$ $Q_{TE_{01}} = 5.0 \times 10^8$
- **D** Soliton condition (reasonable Q)
 Pump mode: TE_{02} Raman mode: TE_{01} $Q_{TE_{02}} = 7 \times 10^6$ $Q_{TE_{01}} = 1.8 \times 10^7$
- **D** No excitation (too low-Q)
 Pump mode: TE_{02} $Q_{TE_{02}} = 7 \times 10^6$ Raman mode: TE_{01} $Q_{TE_{01}} = 9.0 \times 10^6$ Copyright © Keio University

- Background & Motivation
 - Raman scattering in Kerr comb generation
- Numerical modeling
 - Simultaneous Lugiato-Lefever Equations
- Numerical results
 - Dependence on Q factor
 - Raman soliton generation
- Summary

Summary

[Experiment]

•We observed multi-mode generation through Raman scattering with silica toroidal microcavity.

[Numerical simulation]

- •We developed simultaneous LLE considering Raman effect.
- •We considered TE_{00} , TE_{01} , and TE_{02} modes.
 - Lower Q mode pumping excites Higher Q mode.
 - Three mode interaction could be occurred.
 - Raman soliton can achieve when Raman mode satisfies soliton condition.

Thank you very much

Acknowledgement

 Ministry of Education, Culture, Sports, Science and Technology (MEXT) (KAKEN 15H05429)

Grant-in-Aid from the Ministry of Education, Culture, Sports,
 Science and Technology, Japan for the Photon Frontier Network
 Program.