

PIERS2016 SC3 14:00-14:20 Aug. 8. 2016

Recent progress on high-Q photonic crystal nanocavities: Photolithographic fabrication and reconfigurable system <u>Takasumi Tanabe</u>,

Tomohiro Tetsumoto, Yuta Ooka and Nurul Ashikin Binti Daud

takasumi@elec.keio.ac.jp

Department of Electronics and Electrical Engineering,

Keio University, Japan

Copyright © Keio University

Outline

- 1. Background & Motivation
- 2. Ultrahigh Q nanocavity w/ photolithographic Si PhC
- 3. Controlling the randomness: EO modulator
- 4. 8-ch in-plane DWDM DEMUX
- 5. Reconfigurable high-Q PhC nanocavity

6. Summary

Motivation: Si-photonics vs. PhC

T. Yin, *et al.*, Optics Exp. **15**, 1**396**5 (2007)

T. Tanabe *et al.*, Nature Photon. 1, 49 (2007).

Fusion of Si-photonics & Photonics crystals

Design & Simulation

Width-modulated line defect cavity T. Tanabe, et al., Nature Photon. 1, 47 (2007).

Principle of confinement

Photolithographic fabrication? & Dielectric cladding?

► FDTD – w/ SiO₂ cladding

Y Ooka, *et al.*, *Sci. Rep.* **5**, 11312 (2015).

Optimized structure

 $Q = 7.1 \times 10^6$ $V = 2.4 (\lambda/n)^3$

Fabricated parameter

 $Q = 8.1 \times 10^5$ V =

 $V = 1.7 \ (\lambda/n)^3$

Photolithographic fabrication & proximity effect 🔀

Y Ooka, et al., Sci. Rep. 5, 11312 (2015).

SEM images (effect of fabrication error)

Width-modulated line defect cavity

63 nm 63 nm

L3 cavity

Max amount of shift : 9 nm

Max amount of shift : 63 nm

Width-modulated line defect cavity is robust against the proximity effect

Experiment: High-Q demonstration

Managing the randomness

Y. Ooka, et al. Opt. Express 24, 11199 (2016). Design of our device SiO₂ Si 210 nm W1.05 W1.05 111 W0.98 : 22, 28, 34, 40 (periods) W0.98 W0.98 W1.05 W1.05

Cutoff frequency (mode gap)

Position of light localization occurs randomly in W0.98 W1.05

Photonic Structure Group, Keio University

Managing the randomness

Y. Ooka, et al. Opt. Express 24, 11199 (2016). Design of our device SiO₂ Si 210 nm W1.05 W1.05 111 W0.98 : 22, 28, 34, 40 (periods)

W0.98

Cutoff frequency (mode gap)

W1.05

Theory & experimental result

Y. Ooka, et al. Opt. Express 24, 11199 (2016).

Localization observed at desired position

Yield rate of obtaining localization

Using random PhC for controlled experiment

Y. Ooka, *et al*. Opt. Express **24**, 11199 (2016).

EO modulation achieved w/ pin structure integrated at W0.98 regime

In-plane 8ch DWDM demonstration

In-plane 8ch DWDM demonstration

- Outline
- 1. Background & Motivation
- 2. Ultrahigh Q nanocavity w/ photolithographic Si PhC
- 3. Controlling the randomness: EO modulator
- 4. 8-ch in-plane DWDM DEMUX
- 5. Reconfigurable high-Q PhC nanocavity
- 6. Summary

Principle of cavity formation

Measurement of Q and CE of FCPC

Resonant wavelength tuning

T. Tetsumoto, et al., Opt. Express 23, 16256 (2015).

\bigotimes

- Summary
- 1. Very high-Q is achieved w/ SiO₂ clad photolithographic Si PhC ($Q = 2.4 \times 10^5$)
- 2. Practical EO modulation is demonstrated w/ controlled random PhC device
- 3. 8-ch in-plane DWDM demonstrated
- 4. Reconfigurable (position & wavelength) high-Q PhC nanocavity ($Q = 6.7 \times 10^5$) w/ high-transmittance (T > 99%) demonstrated using nanotapered optical fiber

\bigotimes

Acknowledgement

► The team

Mr. Tomohiro Tetsumoto (PhD candidate / JSPS DC2) Ms. Nurul Ashikin Binti Daud (PhD candidate) Mr. Yuta Ooka (M2) Mr. Naotaka Kamioka (B4)

► Support

Strategic Information and Communications R&D Promotion Programme (SCOPE), from the Ministry of Internal Affairs and Communications