

SPIE Photonics West 2016 9756-54 Fiber-coupled photonic crystal nanocavity for reconfigurable formation of coupled cavity system

Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku, Yokohama 223-8522, Japan *email: takasumi@elec.keio.ac.jp

Tomohiro Tetsumoto, Yuta Ooka, Takasumi Tanabe

Copyright © Keio University

Background

Photonic crystal (PhC) nanocavity

Advantage

- ✓ High Q & extremely small V
 ⇒Useful for nonlinear experiments
 Disadvantages
- \checkmark Coupling to fiber is poor
- Collection efficiency is low

T. Tanabe, *et al.*, Appl. Phys. Lett. **96**, 101103 (2010).

Coupled cavity system w/ PhC nanocavities

Advantage

- Complex functions achievable
 i. e. optical buffer, optical memory
 Disadvantage
- Requires advanced fabrication technique

Nanofiber assisted reconfigurable PhC nanocavity \bigotimes

Fiber coupled PhC nanocavity (FCPC)

✓ Is reconfigurable

✓ $Q = 5.1 \times 10^5$, coupling efficiency (CE) of 39% (Highest value for reconfigurable PhC nanocavity) ✓ $Q = 6.1 \times 10^3$, CE of 99.6% (higher recorded value)

Ju-Young Kim, *et al*., Optics Express **1**7, 13009 (2007).

T. Tetsumoto, *et al*., Opt. Express **23**, 16256-16263 (2015).

Motivation

Demonstration of reconfigurable coupled cavity with high coupling efficiency using FCPC platform

Overview

- ✓ General properties of FCPC
- ✓ Experimental formation of coupled cavity using FCPC

Principle of cavity formation

Effective refractive index change results in formation of modegap cavity

Experiment

Measurement of Q and CE of FCPC

Resonant wavelength tuning

Multiple cavity formation

Multiple cavity formation

was observed

RMS: 1.7nm

Det WD

Resonant wavelength tuning of multi modes

Amount of shifts are different for each modes

Coupled cavity formation

Coupled cavity formation

Numerical model of coupled cavity system

Numerical model of coupled cavity system (w/o PhC waveguide)

Parameters

Numerical model of coupled cavity system (w/o PhC waveguide)

Parameters

 $\lambda_2 = 1537.87 - 0031 \times \text{steps nm}, \lambda_1 = 1537.77 - 00051 \times \text{steps nm}, e^{i\beta d} = i,$

Numerical model of coupled cavity system (w/ PhC waveguide)

Parameters

$$\begin{aligned} Q_{load}^{-1} &= (Q_{i}^{\prime -1} + Q_{p}^{-1}) + Q_{w}^{-1} & \overbrace{Q_{1w} \qquad Q_{1p} \qquad Q_{2w}} \\ Q_{1i}^{\prime} &= 1.4 \times 10^{7}, Q_{1w} = 3.0 \times 10^{7}, Q_{2i}^{\prime} = 6.3 \times 10^{5}, Q_{2w} = 7.7 \times 10^{6} \\ \lambda_{2} &= 1537.87 - 0031 \times \text{steps nm}, \lambda_{1} = 1537.77 - 00051 \times \text{steps nm}, e^{i\beta d} = i, , \\ Q_{1p}^{\prime} &= 7.0 \times 10^{5}, Q_{2p} = 7.0 \times 10^{5} \end{aligned}$$

Numerical model of coupled cavity system (w/ PhC waveguide)

Parameters

Summary

✓ Properties of fiber coupled PhC nanocavity

- > Obtained a highest Q of 6.7×10^5
- > Controlled CE from 6.6% to 99.6% (Corresponds to $Q_{coup} = 3.7 \times 10^7$ and 1.3×10^4)
- Demonstrate tuning of resonant wavelength (resolution of 0.27 pm/nm)
- ✓ Coupled cavity formation based on FCPC
 - > Achieved $g/2\pi = 0.94 \text{ GHz}$ $(g \approx \gamma)$

This work was supported by the Strategic Information and Communications R&D Promotion Programme (SCOPE).