JTu3A.68

Highly Sensitive Ammonia Gas Detection with a Silica Toroid Microcavity Packaged in a Box

Taku Okamura, Misako Kobayashi, Shun Fujii, & Takasumi Tanabe

Frank i SGLADI Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University

Abstract

We demonstrate highly sensitive ammonia gas (NH₃) detection with a packaged silica toroid microcavity coated with 20-PAA/PAH multilayers. Our experiment shows that a detection sensitivity of 450 ppb is achieved.

Background: Sensing w/ a WGM microcavity

w/ a cavity

w/o a cavity

Background: Previous research

There has been little progress with respect to practical use because it's hard to align a cavity and a tapered optical fiber

Keio University

Results : Ammonia gas sensing

> Experimental setup

 \checkmark From (c), the relationship between gas concentration

Type of sensors	limit	resolution
Semiconductor	1 ppm	1 ppm

and wavelength shift is almost the same in case of increasing or decreasing gas concentration

Graphene	2 ppm	200 ppb
Optical fiber	20 ppm	-
Silica toroid microcavity	450 ppb	1.67 ppb

Conclusions

- We experimentally demonstrated highly sensitive and practical ammonia gas (NH₃) detection with a packaged silica toroid microcavity with PAH/PAA multilayers, and obtained a lower detection limit and higher detection resolution than other types of ammonia gas sensors.
- Because the Q factor of the silica toroid microcavity in this study was not high, we can expect to fabricate a more highly sensitive ammonia gas sensor by using a silica toroid microcavity with a higher Q factor.

Acknowledgements

Grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), (KAKEN 15H05429)

