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Silica microresonators have potential for broad and phase-locked Raman comb generation, which can be used for applications such as sensors, microwave
oscillators, and compact pulse laser sources. However, the formation dynamics in the broadband gain regime has not revealed well. Here we studied
Raman comb formation in silica rod microresonators theoretically and experimentally. Controlling pump detuning and coupling strength could change the
Raman offset wavelength, which correspond to two large peaks in the gain spectrum and generate Raman combs with a smooth envelope. The Raman

comb had 3 dB linewidth of 6 kHz and 20 dB linewidth of 59 kHz.

Background

Optical microresonators are suitable devices to achieve low threshold lasing from a
continuous wave (CW) pump. Soliton and phase-locked Kerr combs, which are
generated via four wave mixing, have been well studied recently. On the other hand,
Raman comb formation has not been understood.

Silica rod microresonator

Kerr comb spectrum

™ M dm.hmm.m.l..h g

1520 1540 | 1560 1580
Wavelength (nm)

Optical power (20 dB/div)

N
&)
S B
o

Raman comb from a silica microresonator

(o))

' Peak 2 Unstable

14.7 THz

Peak 1
13.2T

1N

@ 1550 nm

Il ILI i
]

Raman gain (x10™** m/W)
N

: Stable

o
Optical power (10 dB/div)

0 10 20
Frequency shift (THz)

Silica has broadband Raman gain,
Which induces an asymmetrical Raman comb.
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Phase locking has been reported with CaF,, BaF,, and SiO, microresonators.
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Three mode system

To consider energy exchange between pump and Raman modes at 13.2 and 14.7 THz,

we analyzed intracavity photon numbers by using a simple three mode system.
The weak (strong) coupling induces efficient Raman sctattering at 14.7 (13.2) THz.
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Raman comb formation

Although Raman combs are prone to having complex spectrum due to the broadband
gain, the coupling control can cause obvious offset transition from Peak 1 to Peak 2.

Experiment setup Raman comb spectrum
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The similar behavior was observed
In silica fibers, which depends on
the input pulse power
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Linewidth & Mode spacing

The Raman comb with 18.2 GHz mode spacing has 3 dB linewidth of 6 kHz and 20 dB
linewidth of 59 kHz, which indicates it has a potential to obtain smooth and phase-
locked Raman combs. The detuning stabilization and the dispersion engineering can
Improve the coherence.
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