

The 24th Congress of the International Commission for Optics (ICO-24) F1E-06 10:40 am – 10:55 am Aug. 25. 2017 Experimental investigation of the feasibility of a hybrid system consisting of a photonic crystal waveguide and a toroidal microcavity <u>Tomohiro Tetsumoto¹</u>, Hajime Kumazaki¹, Yoshihiro Honda¹, Wataru Yoshiki¹,

Kentaro Furusawa², Norihiko Sekine², and Takasumi Tanabe¹

1. Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University 2. Advanced ICT Research Institute, National Institute of Information and Communications Technology

takasumi@elec.keio.ac.jp

Photonic Structure Group, Keio University

Optical buffering

Background: Coupled optical cavity system

Optical isolation

Bandwidth tuning

Copyright © Keio University | 2

(a)

Hybrid system consisting of two different cavities

Silica toroid microcavity

Ultra-high Q (Long storage time) Operating principal: Optical Kerr effect

- Frequency Kerr comb
- Low power optical switch
- Optical buffer

Si Photonic crystal nanocavity

Ultra-small *V* (Quick response) Operating principal: Carrier plasma effect

- Fast optical switching
- Photodetection
- EO modulation

Hybrid system consisting of two different cavities

Silica toroid microcavity

Ultra-high Q (Long storage time) Operating principal: Optical Kerr effect

- Frequency Kerr comb
- Low power optical switch
- Optical buffer

Si Photonic crystal nanocavity

Ultra-small *V* (Quick response) Operating principal: Carrier plasma effect

- Fast optical switching
- Photodetection
- EO modulation

Motivation

Goal

Hybrid coupled cavity system of silicon photonic crystal nanocavities & silica microcavities

Agendas

- Demonstration of direct coupling between a toroid microcavity & a PhC waveguide experimentally
- Quantification of a possible coupling quality factor

Sample preparation

Sample preparation

 \sum

Sample preparation

Experimental setup

TLD: Tunable laser diode. SSC; Spot size converter. PM: Power monitor

Photonic crystal structure

Lattice constant 420 nm Radius 123 nm, Thickness 210 nm Length of W0.98 waveguide : about 13 μm Length of each W1.05 waveguide : about 44 μm

Result: Transmission spectrum

Result: Transmission spectrum

Result: Transmission spectrum

Result: Smallest coupling Q

Result: Comparison of the transmission spectrums

Result: Comparison of the transmission spectrums

Result: Comparison of the transmission spectrums

Achievements

- Demonstrated direct coupling between a toroid microcavity & a PhC waveguide
- \checkmark Obtained a coupling Q of 5.7 $\times\,10^4$

Acknowledgements

- This work is supported by
 - ✓ Strategic Information and Communications R&D Promotion Programme (SCOPE) (#152103015)
 - ✓ JSPS KAKENHI Grant Number 16J05171