

Integrated Photonics Research, Silicon, and Nano-Photonics (IPR) IM4A.3 17:15 - 17:45 Jul. 24. 2017

Stimulated Raman Scattering Comb in a Silica Microcavity

<u>Takasumi Tanabe</u> Takumi Kato, Shun Fujii, Ryo Suzuki

takasumi@elec.keio.ac.jp

Department of Electronics and Electrical Engineering, Keio University, Japan

Copyright © Keio University

Outline

- 1. Introduction / Motivation
- 2. Competition between SRS and FWM
- 3. Transverse mode coupling w/ SRS
- 4. Broad bandwidth visible light via SRS & THG

High-Q whispering-gallery mode microcavities

Silicon nitride Weiner group (Purdue)

Diamond Crystalline (CaF₂, MgF₂, etc)

Kippenberg group (EPFL, Swiss),

Makei group (OE Waves)

Silicon Gaeta group (Columbia)

AIN Tang group (Yale)

Silica Vahala group (Caltech)

AlGaAs Yvind group (DTU, Denmark)

Kerr comb in microcavity system

Convert CW laser to ultrashort pulse train w/ >600 GHz repetition rate

Kerr comb in a silica toroidal microcavity

Motivation

- 1. Understanding the effect of SRS is important for Kerr comb generation because these processes compete with each other inside a microcavity.
- 2. Coherent Raman combs can be used for sensors, microwave generators, and small pulse laser sources.

The study Raman comb formation inside silica WGM microcavities

Outline

- 1. Introduction / Motivation
- 2. Competition between SRS and FWM
- 3. Transverse mode coupling w/ SRS
- 4. Broad bandwidth visible light via SRS & THG

Kerr comb in a silica toroidal microcavity

Photonic Structure Group, Keio University

Four-wave mixing gain

[Case 1: in fiber propagation] $g(\Omega) = |\beta_2 \Omega| \sqrt{\Omega_c^2 - \Omega^2}$ $\Omega_c^2 = \frac{4\gamma P_0}{|\beta_2|} \qquad \gamma : \text{nonlinear coefficient}$ $\beta_2 : \text{second-order dispersion}$

[Case 2: in cavity resonance]

$$g(\Omega) = \sqrt{(\gamma L P_0)^2 - (\delta_{\text{miss}})^2}$$

•detuning from a cavity mode $\delta_{\rm miss} = \delta_0 - \beta_2 L \Omega^2 / 2 - 2\gamma L P_0$ $\delta_0 : \text{detuning of input}$

Copyright © KSelection of proper input power is needed to achieve gain in a desired frequency.

Competition between Raman & FWM gain

Steady-state analysis of gain transition

Only Raman gain $\Delta P_{in} = P_{2FSR} - P_{1FSR}$

For large margin ΔP_{in} (Raman region)

✓ Under coupling condition

✓ Large cavity FSR (small diameter)

SRS vs. FWM

Photonic Structure Group, Keio University

Simulation/Experiment results

Outline

- 1. Introduction / Motivation
- 2. Competition between SRS and FWM
- 3. Transverse mode coupling w/ SRS
- 4. Broad bandwidth visible light via SRS & THG

Experimental observation of mode interaction via SRS

T. Kato, et al., Opt. Express 25, 857 (2017).

At a high power input (~1 W), Magnified (1530~1650 nm)

SRS threshold

Photonic Structure Group, Keio University

S

Generation of SRS comb

Photonic Structure Group, Keio University

Analysis of transverse mode interaction

Experiment: Transverse mode coupling via SRS

Beat signals of Raman combs

Raman comb formation in silica rod microcavity

R. H. Stolen et al., JOSAB **1**, 652 (1984)

Raman comb offset was at Peak2 with a small detuning (high intracavity power), which is similar behavior to that observed in silica fibers.

Outline

- 1. Introduction / Motivation
- 2. Competition between SRS and FWM
- 3. Transverse mode coupling w/ SRS
- 4. Broad bandwidth visible light via SRS & THG

Third-harmonic generation in toroid microcavity

Visible light generation with soliton pulse

Potential for improving THG efficiency

Phase-matching condition for THG

S. Fujii, et al., Opt. Lett. 42, 2010 (2017).

 $\omega_{THG} = 3\omega_p$

Dispersion induced resonance mismatch

 $k_{THG} = 3k_p$

$$\Delta \omega = 3\omega_p - \omega_{THG} \rightarrow 0$$

Intensity distribution (cross-section)

Phase-matched TH mode

Visible comb generation w/ THG, TSFG, and SRS

Broad bandwidth visible light via SRS & THG

Photonic Structure Group, Keio University

Green, Orange, Red light generation w/ SRS assisted THG

S. Fujii, et al., Opt. Lett. 42, 2010 (2017).

Third-harmonic generation w/ FWM and SRS

1.

 \geq

2.

>

3

>

Summary

- 1. Competition between SRS and FWM
 - Controlling the pump allows us to selectively use SRS and FWM

2. Transverse mode coupling w/ SRS

- Transverse mode coupling occurs when we pump in the low Q mode.
- Good coherence is observed by exciting an SRS comb in the same transverse mode

3. Broad bandwidth visible light via SRS & THG

Better wavelength tuning achieved via SRS

Acknowledgement

► The team

Mr. Takumi Kato (Kerr comb) Mr. Ryo Suzuki (cavity opto-mechanics) Mr. Wataru Yoshiki (CW/CCW coupling) Mr. Shun Fujii (CW/CCW mode coupled FWM) Mr. Akitoshi C.-Jinnai (THG generation) Mr. Tomoya Kobatake (LL calculation) Mr. Yusuke Okabe (nonlinear CMT calculation) Ms. Misako Kobayashi (packaging)

Collaborators

Prof. Y. Kakinuma (Keio Univ.)

Support

Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, KAKEN #15H05429

Strategic Information and Communications R&D Promotion Programme (SCOPE), from the Ministry of Internal Affairs and Communications