

Conference on Lasers and Electro-Optics 2015 (CLEO2015) [STu1I.4]

Low-power on-chip all-optical Kerr switch with silica microcavity

Wataru Yoshiki & Takasumi Tanabe

Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Japan

Copyright © Keio University

Microcavity-based all-optical switch

Optical microcavities

Optical microcavities have
High
$$Q$$
 factor
Small mode volume
 $P_{switch} \propto V_{cavity}/Q^2$

All-optical switch based on a PhC nanocavity

- Principle: Refractive index change by carrier
- Record low energy consumption (0.42 fJ)
- Small foot print(0.025 μm³)
- Fast switching (>20GHz)

Microcavity-based all-optical switch

Optical microcavities

All-optical switch using Kerr effect

Previously reported all-optical Kerr switches

Objective & Table of contents

Objective

To achieve all-optical switching using Kerr effect in a silica toroid microcavity with an ultra-low control power

Table of Contents

- 1. Basics of optical Kerr switch
 - Principle of switching
 - How to modulate refractive index

- 2. Results
 - All-optical switching operation
 - Dependence on control pulse width
 - Reduction of required control power
 - Comparison to other optical Kerr switches

Principle of optical Kerr switch

Principle of optical Kerr switch

How to modulate refractive index

Carrier-plasma effect

 $(\infty Carrier density)$

Negligible in silica. (Large bandgap for telecommunication band)

Thermo-optic (TO) effect

(∝ Temperature)

Optical Kerr effect

 $(\propto Light intensity)$

1. TO effect is dominant in an equilibrium.

 $\Delta n_{\rm Kerr} \ll \Delta n_{\rm TO}$

2. Kerr effect is much faster than TO effect

 au_{Kerr} (ps) $\ll au_{\mathrm{TO}}$ (µs-ms)

Kerr effect can be induced selectively by inputting short control pulses

All-optical switching operation using Kerr effect (1)

All-optical switching operation using Kerr effect (2)

Reduction of required control power

Modulation w/ control power of 36 μ W was observed.

Comparison to other optical Kerr switches

Packaging in polymer⁴⁾

Integration w/ wg ⁵⁾

M. Pöllinger & A. Rauschenbeutel, Opt. Express 18, 17764– (2010)
 N. Vukovic et al., Sci. Rep. 3, 2885-(2013).
 I. Razdolskiy et al., Opt. Express 19, 9523- (2011).

4) X. Zhang & A. Armani, Opt. Express 21, 23592- (2013)

5) F. Monifi et al., IEEE Photon. Technol. Lett. 25, 1458- (2013)

Copyright © Keio University

Summary & Conclusion

All-optical Kerr switch driven with control power of 36 μ W and fiber transmittance of 90% was achieved experimentally.

Novelties & superiorities

The control power of 36 μW is the lowest among previously reported all-optical Kerr switches.

All-optical Kerr switch which can be fabricated on chip was achieved by taking advantage of a silica toroid microcavity.

X Thank you for your attention!

Acknowledgement

Keio Program for Leading Graduate School "Science for Development of Super Mature Society"

For more information

W. Yoshiki and T. Tanabe, "All-optical switching using Kerr effect in a silica toroid microcavity," Opt. Express **22**, 24332-24341 (2014).