

CLEO Europe 2015 CK-9.4 Photonic Micro- and Nanocavities

Nanocavity Formation with a Q of a Half-million using Photonic Crystal Waveguide and Nanofiber

Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku, Yokohama 223-8522, Japan takasumi@elec.keio.ac.jp

T. Tetsumoto, Y. Ooka, A. Fushimi, and T. Tanabe

Copyright © Keio University

Background

Photonic crystal (PhC) nanocavity

Advantages

- ✓ High Q & extremely small V
- ✓ Suitable for integration

Disadvantages

- Coupling to fiber is poor
- Collection efficiency is low

Lett. 96, 101103 (2010).

T. Yoshie, *et al.*, Nature **432**, 200-203 (2004).

Post-formation of PhC

- Controlability of resonant wavelength & position
- ✓ High Q cavity (> 10^6)
- Relocation of the cavity not possible

Nanofiber assisted relocatable nanocavity

Ju-Young Kim, et al., Optics Express 17, 13009 (2007).

Hee-J. Lim, et al., Optics Express 21, 6724 (2013).

Advantages

- Is reconfiguable \checkmark
- High Q (> 10^7) & high coupling efficiency \checkmark (CE of nearly 100%) theoretically

Experimental values

- 2D photonic crystal waveguide
- ✓ $Q = 5.8 \times 10^3$, CE 2.2%
- 1D dual-rail photonic crystal waveguide
- ✓ $0 = 1.1 \times 10^4$, CE 30%

CE: coupling efficiency

Bottlenecks

- Absorption of quantum dots
- **Fabrication imperfections**

Motivations

✓ High Q cavity formation on Si PhC waveguide
✓ Achieving high coupling efficiency
✓ Tuning resonant wavelength of nanocavity

In addition, All-pass filter type coupled cavity resonance will be reported

Principle of cavity formation

Cavity formation model

Numerical calculation

Experiment

Experimental results

Transmission spectrum

Infrared red image

Tuning of resonant wavelength

Polarization dependence & Coupling efficiency

Coupled cavity resonance

Formation of coupled cavity system

All-pass filter

F. Xia, *et al.*, Nat. Photonics **1**, 65-71 (2007).

- Multi-coupled cavity system formed
- \Rightarrow It will function as optical buffers

Summary

- We demonstrated fiber-coupled PhC nanocavity formation on Si PhC waveguide
 - ✓ Obtained a high **Q** of 5.1×10^5 w/ a CE of 39%
 - ✓ Achieved a critical coupling (CE 99.6%) w/ a Q of 6.1×10^3
 - Demonstrate fine tuning of resonant wavelength (presision of 0.27 pm/nm)

We obtained multi-mode resonance

- ✓ All-pass filter type coupled cavity system formed
- \checkmark It will function as delay line
- ✓ Further analysis of this type of coupling is future work

For more information,

T. Tetsumoto, et al., Opt. Express 23, 16256-63 (2015).

This work was supported by

a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan for the Photon Frontier Network Program.