

SC3: Session 3A_14 Jul. 8, 2015 9:40-10:00

Optical Kerr switching and comb generation in a silica whispering gallery mode microcavity

Takasumi Tanabe

*takasumi@elec.keio.ac.jp

Department of Electronics and Electrical Engineering, Keio University, Japan

Outline

1. Background (photonic crystal and WGM cavity)

2. Kerr switch w/ WGM cavity

3. Kerr comb w/ WGM cavity

4. Summary

1. Background

Various high Q microcavities

Background

High Q/V microcavities

1. Background

Photonic crystal nanocavity

1. Background

Motivation

>Si based PhC	SiO ₂ based WGM
ⓒ Refractive index: 3.4 →Small size	
Boundary Construction Series Construc	<pre> ② Loss: 0.13 dB/km →Q > 10⁸ is possible </pre>
Band gap: @1.2 μm →Carrier effect (absorb photons)	

Motivation

- 1. Is Kerr switch feasible at reasonable power
- 2. What is the minimum possible power w/ Kerr switch.

Ultra-high Q toroidal microcavity

Time domain measurement: Rabi oscillation \bigotimes

Waveform

PC

EOM

PPG

Input

TLD

Cavity

Ş

Input

EDFA

BPF

OSO

8

EDFA

BPF

PD

All optical switch (Silica / Kerr effect)

W. Yoshiki and T. Tanabe, Opt. Express 22, 24332 (2014).

Modulation observed at 36 μ W

3. All-optical switch (Kerr effect)

Comparison w/ other Kerr switches

Kerr comb

 $P_{threshold} \propto \frac{1}{\Omega^2}$

: mode volume, Q : quality factor

V

- Dispersion management w/ high Q cavity
- The mechanism on mode-locking in microcavities is still not fully understood

Ultrahigh repetition rate pulse generation

Ultrahigh repetition rate pulse generation

Kerr comb generation

►SHG autocorrelation trace

Solving Lugiato-Lefever equation w/ splitstep Fourier method

Wavelength (nm)

T. Kato, et. al., arXiv:1408.1204

$$Q_{\alpha} = 7.0 \times 10^6$$
 $\Delta = 2$ (detuning)
 $Q_{\kappa} = 7.0 \times 10^6$

T. Kato, et. al., arXiv:1408.1204

$$Q_{\alpha} = 7.0 \times 10^6$$
 $\Delta = 2$ (detuning)
 $Q_{\kappa} = 7.0 \times 10^6$

T. Kato, et. al., arXiv:1408.1204

Experiment: mode-locking by power control

Considering Raman effect

$$t_R \frac{\partial E}{\partial t} = \left[-\alpha - \kappa - i\delta_0 + iL \sum_{k \ge 2} \frac{\beta_k}{k!} \left(i \frac{\partial}{\partial \tau} \right)^k + N \right] E + \sqrt{\theta} E_{in}$$

$$N = i\gamma L \left(1 + \frac{i}{\omega_0} \frac{\partial}{\partial t} \right) \left(E \int_{-\infty}^{\infty} \frac{R(t')}{|E(t - t')|^2} dt' \right)$$

$$\begin{aligned} \mathbf{R}(t) &= (1 - f_R)\delta(t) + f_R \mathbf{h}_R(t) \\ \mathbf{h}_R(t) &= \left(\frac{\tau_1^2 + \tau_2^2}{\tau_1 \tau_2^2}\right) \exp\left(-\frac{t}{\tau_2}\right) \sin\left(\frac{t}{\tau_2}\right) \end{aligned}$$

$$S$$
 $cavity$ d

S : Input power κ : coupling coefficientr: round trip number β : dispersion parameter t_R : round trip time γ : nonlinear parameter δ_0 : detuning of input f_R : contribution of Raman

Transition between multi-FSR mode locking: Effect of Raman 🔀

Transition between multi-FSR mode locking: Effect of Raman \bigotimes

✓ Optical Kerr switch at lowest power demonstrated

- ✓ Kerr comb at 850-GHz spacing is generated
- ✓ 2-FSR mode locking is achieved with 60-mW power
- ✓ We found decreasing the input is essential to obtain mode locking

Fabrication of CaF₂ WGM cavity w/ cutting

Optical measurement & Surface roughness

Parameters:

- Fiber diameter: 3~5 μm
- Input power: 1 mW
- Scan speed: 1 nm/s

Surface: Dislocation loops

Y. Kakinuma, et al., CIRP Annuals (2015) in press.

TEM image

Diffraction images

Polycrystalline layer must be removed

Copyright © Keio University | 26

Acknowledgement

The team

Collaborators

Prof. Y. Kakinuma (Keio Univ.)

Dr. M. Notomi (NTT) Dr. E. Kuramochi (NTT)

Support

Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, KAKEN #15H05429

Strategic Information and Communications R&D Promotion Programme (SCOPE), from the Ministry of Internal Affairs and Communications

Controllable mode spacing: generating Type1 (low noise) comb intentionally

