

ALPS5-I1-7

Nonlinear Parametric Oscillation Phase-matched via High-order Dispersion in High-Q Silica Toroid Microresonators

ALPS2018, 24, April, 2018

Shun Fujii, Minori Hasegawa, Ryo Suzuki, and Takasumi Tanabe

Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Japan

Copyright © Keio University

Outline

- 1. Background
 - Optical parametric oscillator
 - Phase-matched four-wave mixing in microresonators
- 2. Numerical simulation of cavity dispersion
- 3. Experimental observation

4. Summary

Optical parametric oscillators (OPOs)

Difference frequency generation

N. Savage, Nat. Photonics 4, 124 (2010).

G. K. L. Wong, et al. Opt. Express 15, 2947 (2007).

 $\chi^{(3)}$ Optical fiber OPO

Degenerated FWM

High-Q Microresonators

- ✓ <u>On chip-scale (small)</u>
- ✓ Low cost

Phase-matched FWM in microresonators

Anomalous dispersion Kerr comb generation

- Initial FWM requires modulation instability gain
 MI gain requires *anomalous dispersion*
- ✓ Balance between Kerr effect and dispersion

T. Herr, et al. Nat. Photonics 8, 145 (2014).

Phase-matched FWM in microresonators

Scheme in this work (Parametric sideband generation)

G. K. L. Wong, *et al.* Opt. Express **15**, 2947 (2007). Copyright © Keio University | 5 A. B.

Bulk magnesium fluoride

MI gain is achieved by unique phase-matching

- **Oispersion near the pump is normal**
- Phase-matching far from the pump mode

Silica microspheres

A. B. Matsko, et al., Optics Letters 41, 5102 (2016) N. L. B. Sayson, et al., Optics Letters 42, 5190 (2017)

Definition of cavity dispersion

Phase-matching condition (residual dispersion) for initial sidebands

$$\Delta \omega = \omega_{\mu} - \omega_0 - (\omega_0 - \omega_{-\mu}) = D_2 \mu^2 + \frac{D_4}{12} \mu^4 \to 0 \quad \mu^2 = -\frac{12D_2}{D_4} (D_2 \cdot D_4 < 0)$$

Fourth-order dispersion plays important role in phase-matched FWM!

Calculation method of cavity dispersion

Phase-matching points depending on cavity geometry

Major diameter 120 um, Minor diameter 8 um, 1-TE mode

Initial FWM occurs at the points $\Delta \omega = 0$

Phase-matching points depending on cavity geometry

Phase-matched wavelength can be controlled by changing pump or geometry This method offers chip-scale arbitrary frequency generators (convertors)!

Fabrication process of silica toroid microresonator

(Major diameter 20~200 μm) (Minor diameter 3~12 μm)

Photonic Structure Group, Keio University

Experimental setup and optical properties

Copyright © Keio University | 11

Observation of OPO in Resonator A

Copyright © Keio University | 12

Observation of OPO in Resonator B

Copyright © Keio University | 13

- Demonstrated optical parametric oscillation in on-chip high-Q silica toroid microresonator
- Investigated the dependence of phase-matching condition on pump wavelength and cavity geometry
- Observed pure OPO signals and broadband four-wave mixing light by changing the pump wavelength

Thank you for your attention

Funding information

JSPS KAKENHI Grant Number JP15H05429 Grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for the Photon Frontier Network

Keio Univ

Copyright © Keio University