

CLEO Pacific Rim 2018 2982117

Improved CMOS compatible photonic crystal demultiplexer

Keio University Graduate School of System Design and Management

Shengji Jin, Yuta Ooka, Tomohiro Tetsumoto, Nurul Daud,

Naotaka Kamioka, Taku Okamura, Takasumi Tanabe

kins@phot.elec.keio.ac.jp

Data traffic estimation (mobile and data center)

> Mobile data traffic estimation > Data traffic estimation in data center vice in 2 years 50 Rapid increase Middle east **Africa** 20 **Center & East** 40 TB/month) (TB/year) Europe Latin **America** 30 10 Asia 20 $\times 10^{9}$ 106 Within data center X 10 5 EU Between data center North Data center - users America 0 $\mathbf{0}$ 2016 2019 ,0,16 **Cisco Visual Networking Index 2017** Cisco Global Cloud Index 2017

Shortening distance of optical telecom

J. Bautista, "The Potential Benefits of Photonics in the Computing Platform", Optoelectronic Integrated Circuits VII (SPIE, San Jose, CA, USA), pp. 1-8, 2005.

Main target of Si photonics(middle \sim long term)

Trend and next-generation technology of Si photonics

Si photonics devices

A. Narasimha, et. al, ISSCC 2007

From the Finisar corp.'s website

Y. Vlasov, ECOC 2008 Tutorial, 2008

A. Alduino, Intel, 2013

Communication standard in https://www.finisar.com/sites/default/files/resources/si.photonic.wdm in the datacenter 20

15.pdf? ga=2.85209625.1695949495.1520763822-568920199.1520561408

Standard	Bit Rate	Fiber Pairs	λ	Baud Rate	Bits /Baud	Туре
1GbE-LR, SR	1G	1	1	1G	1	Serial
10GbE-LR, SR	10G	1	1	10G	1	Serial
40GbE-SR4	40G	4	1	10G	1	Parallel
40GbE-LR4	40G	1 (4) 10G	1	WDM
100GbE-SR4	100G	4	1	25G	1	Parallel
100GbE-LR4, CWDM4, CL4	100G	1 (4) 25G	1	WDM
100G PSM4	100G	4	1	25G	1	Parallel

Electric wiring vs. Optical wiring (Ultra short distance)

	Electric wiring	Optical wiring	Wiring for short distance transmission
Wiring width+pitch width	Cu ~100 nm Co ~ 100 nm CNT < 100 nm	Si: ∼um (400 nm width + >1 um pitch)	We need several channels to utilize advantages of optical
Bandwidth	< 3 GHz	> 10 GHz/ch	
Capacity / 1um wiring width	~ 10 GHz	< 10 GHz/ch	Ultra compact DeMUX
opyright © Keio University	4	•	-

Characteristics of various DeMUX

Objective (Required properties of DeMUX)

I. Size : $100 \ \mu m^2$ order

Ultra small size is ideal in terms of on-chip integration \rightarrow PhC or plasmonic circuits

II. Number of channel: ~ 10 ch (@ ~ 10 Gb/s per. ch.)

Around 10 ch would be needed to utilize optical wiring's advantages

III. Crosstalk: $-10 \text{ dB} \sim -20 \text{ dB}$

Our target is ultra-short distance and do not need EDFA Around -20 dB would be enough

IV. Total loss: -10 dB

Micro strip line's transmission loss : \sim - 3 dB/cm

 \rightarrow Around -10 dB loss@electrical@distance:~cm

Optical wiring's loss: $-0.2 \text{ dB/cm} \rightarrow \text{input loss is bigger}$

V. Others: Mass production(Photolithography) • Stability(SiO₂ cladding • heaters)

PhC DeMUX made by photolithography

Wavelength (nm)

CMOS compatible high Q PhC cavity

High Q cavity Y. Ooka, et.al Sci. Rep. 5, 11312 (2015). 10[°] (1) (μ m) Transmittance (a.u.) $Q = 2.2 \times 10^5$ 9 nm 0 0 (10⁻¹ Transmittance (a.u.) **10**⁻¹ Ognm O 10⁻² 10-1 1619.15 1619.20 1619.25 10⁻³ Wavelength (nm) 10-2 1600 1610 1615 1620 1605

Photolithography
SiO₂ cladding

7

 $Q = 2.2 \times 10^5$

Photonic Structure Group, Keio University³

Design of DeMUX consisting of PhC cavity

Y. Ooka, et al. Opt. Express 25, 1521 (2017).

- ✓ lattice constant: 420 nm ~ 413 nm
- ✓ Number of channel: 8 ch

Photonic Structure Group, Keio University

Fabrication of CMOS compatible DeMUX

Y. Ooka, et al. Opt. Express 25, 1521 (2017).

Fabrication >

- CMOS process foundry (IME in Singapore) \checkmark
- 248-nm lithography (with phase-shifting mask) \checkmark

Spectrum

 \succ

Objective (Required properties of DeMUX)

Cause of crosstalk

Undesirable crosstalk Influence of mode edge W0.98 mode edge Experiment -50 Transmittance Resonance Transmittance (dBm) -60 ch1 ch8 *a* = 420 nm *a* = 413 nm 70 -80 Wavelength Problem: 1565 1555 1560 1570 Mode edge may coupe to Wavelength (nm) PhC cavity 10° **BUS WG** Ξ **FDTD** simulation (a) Transmittance (a.u.) Coupling 10^{-1} 10⁻¹ E, 10⁻² 10⁻² 10^{-3} 10⁻³ 10⁻⁴ 1565 15 1550 1555 1560 1570 10-4

1550

1555

1560

Wavelength (nm)

1565

1570

1575

Wavelength (nm)

Optimization of output waveguides' position

Improved crosstalk and transmittance

 \succ (ii) Transmittance (Simulation)

Measured spectrum

Before improvement (0,0)

After improvement (3,0)

Total loss (dB)	35~40	15~20
Crosstalk (dB)	-8.36	-29.3
Fluctuation (dB)	16.2	5.5

Objective (Required properties of DeMUX)

Optimization of device size (heater interval)

Copyright © Keio University | 16

Conclusion

	Our research	Y. Hida, <i>et. al.</i> , OSA TOPS Vol. 54 Washington DC (2001)	Test Warget Warget Free Propagaton Region Re	Y. Takahashi, <i>et. al.</i> , Opt. Exp. 22 , 4692 (2014)
Fabrication method	Photolithography	EB lithography	Photolithography	Photolithography
Number of channel	8	32	512	400
Channel spacing (GHz)	240	100	25	25
Device size $(\mu m^2/ch)$	110	100	76000	2000000
Crosstalk (dB)	—29	-	-4	-20

- > We achieve crosstalk of -29.3 dB
- ➢ we could improve total loss form 35 dB to 15 dB
- \blacktriangleright We optimize the device size to 110 $\mu m^2/ch$ through heat-flux simulation

Thanks for listening

Strategic Information and Communications R&D Promotion Programme (SCOPE), from the Ministry of Internal Affairs and Communications

Keio Univ