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2 Microcombs

Ti:Sapphire laser Fiber laserMicroresonator

https://www.aist.go.jp/index_ja.html

- Compact size
- Low consumption energy
- Large mode spacing

(frep~ 10-1000 GHz)
Applications
- Optical communications
- Dual-comb spectroscopy
- Dual-comb LiDAR
- Microwave oscillators
- Optical frequency 

synthesizers

http://www.mpq.mpg.de/~haensch/comb/index.html

Laser light having a comb-like spectrum, which is generated from a microresonator.

Comb spectrum

“Microcombs” or “Kerr combs” “Frequency combs”

- Small mode spacing (frep~ 0.01-10 GHz)



3 Dual-comb applications

SpectroscopyLiDAR CARS

Dual-comb applications: scan rate ⇔ difference of repetition frequencies 

Science 354, 600-603 (2016)Science 359, 887-891 (2018)

Dual-comb generation in a single resonator

Advantages

- Simple setup

- Both combs share the same resonator (common 

mechanical vibrations) and the feedback loops, 

which lead to mutual coherence.

Nature 502, 355-358 (2013)

Science 356, 1164-1168 (2017)

Microcombs have a potential to achieve fast scan rate due to high repetition frequencies



4 Dual-comb generation in a single microresonator

CW/CCW directions TE/TM modes Transverse modes

○ ○

😞 Complex control of pump frequencies 
☺ Large repetition rate difference

☺ Simple control of pump frequencies
😞 Small repetition rate difference

Microresonator

Pump Pump

Microresonator

Pump
Pump

Left: Nat. Photonics 11, 560-564 (2017)
Right: arXiv preprint arXiv:1804.03706 (2018)

Recently, some experimental demonstrations have been reported.
CW/CCW directions Transverse modes



5 Motivation of this study

Interaction between two solitons in a microresonator has not been well understood.
Here we focus on soliton trapping between orthogonally polarized solitons.

← In previous research,
soliton trapping has been observed experimentally
via Raman effects with single-pumping.

In this work,
we consider a system where two solitons are excited 
with dual-pumping having orthogonally polarizations.

Nat. Phys. 13, 53-57 (2017)

In this work,
- Develop a simulation model based on coupled Lugiato-Lefever equations (LLEs),     

taking cross-phase modulation (XPM) and repetition difference terms into account.
- Calculate with generalized parameters to reveal trapping conditions
- Perform analysis of coupled solitons solutions.



6 Simulation model
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Coupled Lugiato-Lefever equations (LLEs)

Dimensionless coupled LLEs
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(loss) (detuning) (dispersion) (Kerr effects) (input) (repetition difference)

𝑡: time, 𝜙: angular coordinate, 𝑎, 𝑏: internal fields, 𝜅: resonator loss, Δ𝜔଴: pump detuning, 𝐷ଶ: second order dispersion,
𝑔: nonlinear coefficient, 𝜎: XPM coefficient (𝜎 = 2/3 for orthogonally polarizations), 𝜅ୡ: coupling rate, 𝑠୧୬: input field,
Δ𝐷ଵ: FSR (repetition frequency) difference

Relations, α: detuning, β: second order dispersion, γ: repetition difference, F: input



7 Soliton trapping with dimensionless coupled LLEs

𝛽ሺ∗ሻ ൌ 0.01, 𝛾 ൌ 0.3, 𝐹ሺ∗ሻ ൌ 4
𝛼 is scanned
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Spectrum

Waveform

Intracavity
power

Relations, α: detuning, β: second order dispersion, γ: repetition difference, F: input

Moving at different speeds:
Micorocombs propagate
at different group velocities



8 Trapping conditions as functions of F and δ
Waveforms

Center frequency shift:
Δ𝜔 ൌ ୼஽భ

ଶ஽మ
ൈ 𝐷ଵ

Group velocities are
compensated with XPM

Trapping conditions as functions of F and δ

Relations α: detuning, β: second order dispersion, γ: repetition difference, F: input, δ = γ(2β)-0.5

u

v



9 Analysis of coupled solitons solutions
Dimensionless coupled LLEs
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Ansatz of coupled solitons for perturbed Lagrangian approach
𝑢 ൌ 𝐵sech 1 ൅ 𝜎𝐵𝜃 exp 𝑖𝜑଴ exp 𝑖δ𝜃 ,   𝑣 ൌ 𝐵sech 1 ൅ 𝜎𝐵𝜃 exp 𝑖𝜑଴ exp ሺെ𝑖𝛿𝜃ሻ

Relations, α: detuning, β: second order dispersion, γ: repetition difference, F: input, δ = γ(2β)-0.5



10 Strong soliton supports weak soliton generation
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Strong soliton supports weak soliton generation



12 Summary
- Developed simulation model with coupled LLEs, which include XPM and repetition 

difference terms

- Calculated with generalized parameters to reveal trapping conditions

- Performed analysis of coupled solitons solutions

Trapping conditions Analysis of coupled solitons solutions
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