

CLEO Pacific Rim July 30, 2018, 16:00-16:25

Brillouin lasing in a coupled toroid microcavities system

Takasumi Tanabe, Yoshiki Wataru, and Yoshihiro Honda

Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Japan

High-Q whispering-gallery mode microcavities

Applications of coupled cavities system:

1. Weak coupling: Photonic memory

W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine and T. Tanabe, "Alloptical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities," Sci. Rep. Vol. 7, 10688 (8 pages) (2017).

2. Strong coupling: Brillouin laser

Y. Honda, W. Yoshiki, T. Tetsumoto, S. Fujii, K. Furusawa, N. Sekine, and T. Tanabe, "Brillouin lasing in coupled silica toroid microcavities," Appl. Phys. Lett., Vol. 112, 201105 (5 pages) (2018). (**Featured Article**) (**Scilight**)

Copyright © Keio University

Dynamic tuning provides tunability

Introduction

Whispering gallery mode cavity

Whispering gallery mode cavities

Silica rod (*Q*>10⁸)

Silica toroid (Q>10⁸)

$CaF_{2} disk (Q>10^{10})$

Silica sphere (Q>10⁸)

C. Zheng *et al*., Opt. Express 20, 18319–18325 (2012).

CRIT

B. Peng *et al.*, Opt. Lett. 37, 3435-3437 (2012).

C. Schmidt et al., Phys. Rev. A 85, 033827 (2012).

Objective

To achieve all-optical tunable buffering using the Kerr effect in coupled ultra-high-*Q* silica toroid microcavities

80

Kerr effect

- Changes refractive index instantaneously.
- Employed for all-optical switching and frequency kconversion Express 22, 24332-24341(2014). W. Yoshiki, <u>T. Tanabe</u> et al., Opt. Lett., 41, 5482-5485 (2016).

Silica toroid microcavity

- Ultra-high *Q* factor (~4 x 10⁸)
- Small mode volume (~ 200 µm³)
- On-chip fabrication

T. Kippenberg et al., Appl. Phys. Lett. 85, 6113 (2004).

Introduction: All-optical "tunable" buffering

Introduction: All-optical "tunable" buffering

Fabrication & Characterization

Device preparation

Silica toroid microcavity on an edge

■ Shrinkage owing to laser reflow

Fabrication

C

Use of edge silica toroid microcavity

Optical modes employed for experiments

Copyright © Keio University

Observation of coupling

Experimental setup

Copyright © Keio University

TLS: Tunable laser source / **IM**: Intensity modulator / **EDFA**: Erbium-doped fiber amplifier **VOA**: Variable optical attenuator / **BPF**: Band-pass filter / **PC**: Polarization controller **PD**: Photodetector / **OSO**: Optical sampling oscilloscope / **PPG**: Pulse pattern generator

 \sum

Experimental results

Experimental results (1)

Buffering operation

All-optical tunable buffering / 10-ns pulse buffered for 20 ns

Experimental results

Experimental results (2)

H. Lee et a., Nat. Commun. **3**, 867 (2012).

Output efficiency: ~10% (due to spectral mismatch)
Equivalent light attenuation: 1.1 dB/m

State-of-art "fixed" on-chip optical buffer: ~0.1 dB/m

Achieved all-optical tunable buffering using the Kerr effect in coupled ultrahigh-*Q* silica toroid microcavities

- First attempt to dynamically control CMIT w/ ultra-high Q WGM cavities.
- 10-ns signal pulse can be buffered for 20 ns.

Outline

Applications of coupled cavities system:

1. Weak coupling: Photonic memory

W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine and T. Tanabe, "Alloptical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities," Sci. Rep. Vol. 7, 10688 (8 pages) (2017).

2. Strong coupling: Brillouin laser

Y. Honda, W. Yoshiki, T. Tetsumoto, S. Fujii, K. Furusawa, N. Sekine, and T. Tanabe, "Brillouin lasing in coupled silica toroid microcavities," Appl. Phys. Lett., Vol. 112, 201105 (5 pages) (2018). (**Featured Article**) (**Scilight**)

Stimulated Brillouin Scattering (SBS)

0 mW

32.4 mW

95.5 mW 151 mW

Schematic representation of SBS process

Microwave synthesizers

10 ns / div. Time (ns) T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, Opt. Express 16, 8026-8032(2008)

Stimulated Brillouin Scattering (SBS)

Kurashima,Opt. Express **16**, 8026–8032(2008)

SBS in microcavities

Frequency

Frequency

Pump scanning

SBS in microcavities

Photonic Structure Group, Keio University

Objective

Silica toroid microcavities

Fabrication

Photonic Structure Group, Keio University

Tuning resonant frequency

• Tuning two different resonant frequencies

Couple tapered fiber to each cavity, and measure each resonant wavelength.

Calculation

18

16

Mode splitting (GHz)

Supermode splitting

45 μm

55 um

65 µm

Photonic Structure Group, Keio University

SBS in coupled cavities

SBS in coupled cavities

- We experimentally demonstrated SBS in coupled microcavities for the first time.
- We achieved a threshold power of about 50 mW.

SBS in coupled cavities

- We experimentally demonstrated SBS in coupled microcavities for the first time.
- We achieved a threshold power of about 50 mW.

Comparison with other Brillouin lasing

Comparison with other Brillouin lasing

Summary (Brillouin laser)

- We achieved the11GHz mode splitting of supermodes that matches the Brillouin frequency shift in silica in coupled silica toroid microcavities.
- We experimentally demonstrated SBS in coupled microcavities and achieved a threshold power of 50 mW.

Acknowledgement

- Grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for the Photon Frontier Network Program.
- Grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), (KAKEN 15H05429)

Summary (for further reading)

Applications of coupled cavities system:

1. Weak coupling: Photonic memory

W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine and T. Tanabe, "Alloptical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities," Sci. Rep. Vol. 7, 10688 (8 pages) (2017).

2. Strong coupling: Brillouin laser

Y. Honda, W. Yoshiki, T. Tetsumoto, S. Fujii, K. Furusawa, N. Sekine, and T. Tanabe, "Brillouin lasing in coupled silica toroid microcavities," Appl. Phys. Lett., Vol. 112, 201105 (5 pages) (2018). (**Featured Article**) (**Scilight**)

Acknowledgement

▶ The team

Support

Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, KAKEN #15H05429