

MOC2018 October 18, 2018, 10:30-11:00

Microcavity based laser sources: Microresonator frequency comb and Brillouin lasing

Takasumi Tanabe, Shun Fujii, Ryo Suzuki, and Yoshihiro Honda

Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Japan

Outline

1. Microcavity comb generation

- a) Theory and essence
- b) Raman comb
- c) THG conversion (broader bandwidth)

2. Brillouin lasing

- a) Coupled cavity system
- b) Brillouin lasing

High-Q whispering-gallery mode microcavities

Kerr comb in microcavity system

Convert CW laser to ultrashort pulse train w/ >600 GHz repetition rate

Required conditions for soliton formation

Copyright © Keio University

Geometric dispersion

Fabrication of CaF₂ WGM cavity w/ cutting

Fabrication of CaF₂ WGM cavity w/ cutting

✓ Computer controlled (design shape)
✓ Ductile mode cutting possible

 $Q = 3 \times 10^7$ with MgF₂ preliminary

RMS = 3 nm

Dispersions in toroid microcavity ($r = 35 \mu m$)

1. Microcavity comb

Ultra-high Q toroidal microcavity

1. Microcavity comb

Photonic Structure Group, Keio University

Kerr comb in microcavity system

Microcomb via four-wave mixing (FWM)

Microcomb via stimulated Raman scattering (SRS)

Kerr comb in a silica toroidal microcavity

Photonic Structure Group, Keio University

Third-harmonic generations in toroid microcavity

Visible light generation with soliton pulse

Potential for improving THG efficiency

Phase-matching condition for THG

S. Fujii, et al., Opt. Lett. 42, 2010 (2017).

 $\omega_{THG} = 3\omega_p$

Dispersion induced resonance mismatch

 $k_{THG} = 3k_p$

$$\Delta \omega = 3\omega_p - \omega_{THG} \rightarrow 0$$

Intensity distribution (cross-section)

Phase-matched TH mode

Third-harmonic generation w/ FWM and SRS

Broad bandwidth generation

Outline

1. Microcavity comb generation

- a) Theory and essence
- b) Raman comb
- c) THG conversion (broader bandwidth)

2. Brillouin lasing

- a) Coupled cavity system
- b) Brillouin lasing

Stimulated Brillouin Scattering (SBS)

Schematic representation of SBS process

Z. Zhu, D. J. Gauthier, R. W. Boyd, Science

318, 1748-1750 (2007)

Time (ns)

T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, Opt. Express 16, 8026-8032(2008)

Stimulated Brillouin Scattering (SBS)

Kurashima,Opt. Express **16**, 8026–8032(2008)

SBS in microcavities

Photonic Structure Group, Keio University

\bigotimes

Method2

C. Guo, K. Che et al., OE 23,25, 32261- (2015)

\bigotimes

Proposed system (Objective)

Y. Honda, et a. Appl. Phys. Lett. 112, 201105 (2018). (Featured Article) (Scilight)

SBS in coupled cavities

SBS in coupled cavities

- We experimentally demonstrated SBS in coupled microcavities for the first time.
- We achieved a threshold power of about 50 mW.

SBS in coupled cavities

Y. Honda, et a. Appl. Phys. Lett. 112, 201105 (2018). (Featured Article) (Scilight)

- We experimentally demonstrated SBS in coupled microcavities for the first time.
- We achieved a threshold power of about 50 mW.

Summary

1. Microcavity comb generation

- a) Theory and essence
- b) Raman comb
- c) THG conversion (broader bandwidth)

2. Brillouin lasing

- a) Coupled cavity system
- b) Brillouin lasing