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Whispering gallery mode microresonators (WGMs) & Kerr frequency comb (microcomb)

DEPARTMENT OF ELECTRONICS & ELECTRICAL ENGINEERING KEIO UNIVERSITY

Abstract
The development of optical frequency combs based on microresonators (Kerr combs, or microcombs) has attracted considerable attention since the 
experimental demonstration of soliton pulse formation. We fabricated an MgF2 microresonator by machine-shaping and hand-polishing. And with 
precise Q-factor or dispersion measurements, we revealed that the dispersion of the resonator changed little while the Q-factor improved by 10 times.

Summary & Future work
We demonstrated that hand polishing improves only the Q factor without changing the dispersion for high-Q magnesium fluoride (MgF2) resonators. In 
other words, for machine-fabricated MgF2 resonators, hand polishing enables their characteristics (Q-factor and dispersion) to satisfy requirements for 
soliton microcomb formation. However, the Q-factor is still not sufficient for soliton generation. From now on, we need to improve the Q-factor to 109 

by further hand polishing, and realize to generate soliton microcombs.
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Q-factor ~107 ~108 ~1010
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𝐌𝐠𝐅𝟐
Material

➢ WGM μ-resonator

✓ Compact

✓ High Q-factor

✓ Small mode volume

𝑸 = 𝝎𝐩𝝉𝐫𝐞𝐬

=
𝝂𝐩

∆𝝂
linewidth

photon lifetime
➢ Kerr comb generation (soliton formation)

Four wave mixing
(FWM)

T. J. Kippenberg, et al., Science 332, 555-559 (2011) Application
✓ Communication
✓ Spectroscopy
✓ RF generation
✓ Astronomy

◆High frep (GHz-THz)

◆Compact
◆ Low drive power

High Q (> 108)
&

Anomalous
dispersion

Y. K. Chembo, et al., Nanophotonics 13, 5 (2016)

1. Q-factor improvement
&

2. Dispersion engineering

Requirement: 

crystalline

… ultrahigh-Q

➢ Resonator dispersion

𝝎𝝁 = 𝝎𝟎 +𝑫𝟏𝝁 +
𝟏

𝟐
𝑫𝟐𝝁

𝟐 +⋯

Deviation of FSR

Taylor
expansion: 

dispersion
𝐷2 > 0: anomalous

𝐷2 < 0: normal

𝐅𝐒𝐑 =
𝒄𝐯𝐚𝐜

𝒏 𝝎 ⋅ 𝑳𝐫𝐞𝐬

dependent on frequency

Geometric
+

Material (MgF2)

µ-resonator : cross-sectional shape

different different

Experimental results (microresonator characteristics, Q-factor and dispersion)
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Microresonator fabrication methods Motivation
⚫ Hand shaping & polishing

𝐌𝐠𝐅𝟐Brass jig

Polishing paper
tweezer

⚫ Ultra-precision machining

✓Ultrahigh Q
( > 109 )

✓Undesignable
(dispersion✖)

✓Cross-sectional
shape control
(dispersion◎)

✓Low Q ( < 107 )
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Req. 2 (D)Lorentzian

ring-down
oscillation

⚫ Dispersion & Q (linewidth, for low Q)

FPC

µ-resonator

PD

⚫ Q-factor (ring-down, for high Q)

FG
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OSC

Exponential fitting
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𝝉𝐫𝐞𝐬Fast tuning
120 nm/s

(Acquiring simultaneously, 100 kHz)
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Previous research
(MgF2 µ-resonator)

soliton formation

Y. Nakagawa, et al., JOSA B 33 (9), 1917 (2016)

Ultrahigh Q (> 108) needed → Achieved by hand polishing

Design of cross-section → Achieved by precise machining → Proper anomalous dispersion

triangle rectangle trapezoidal

* In case of CaF2

➢ Q-factor improvement

➢ Dispersion engineering

by combination of 

hand polishing & machining

Objective

*Threshold power of FWM: 𝑷𝐭𝐡 ∝
𝟏

𝑸𝟐

Measurement scheme

FPC

µ-resonator

ECDL

Broad sweep
1,500-1,640 nm

time

vo
lt

ag
e

PWM

DAQ

Transmitted
power

Wavelength 

dispersion

D
is

p
e
rs

io
n

 
𝟏 𝟐
𝑫
𝟐
𝝁
𝟐
/𝟐
𝝅

(G
H

z
)

Relative mode number 𝝁

experimental
fitting curve

Ex.)
Ex.)

𝝎𝝁 −𝝎𝟎 − 𝑫𝟏𝝁

=
𝟏

𝟐
𝑫𝟐𝝁

𝟐

Quadratic fitting

Q-factor Dispersion

× 10 improvement

*Collect wavelength and transmitted
power values simultaneously 

to construct a spectrum
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