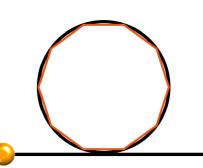
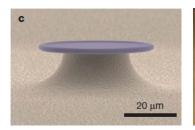
CLEO Europe EQEC 2019 (CK-5.6) June 24, 15:30-15:45 2019

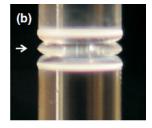

Precisely Dispersion Tailored Crystalline Microresonator with a Q Exceeding 10⁸ Fabricated by Computer-controlled Machining

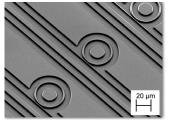
Shun Fujii¹, Mika Fuchida¹, Hikaru Amano², Shuya Tanaka¹, Ryo Suzuki¹, Yasuhiro Kakinuma², and Takasumi Tanabe¹

- Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University
- 2. Department of System Design Engineering,
 Faculty of Science and Technology, Keio University

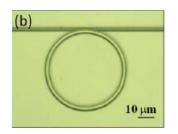
Ultrahigh-Q optical microresonators

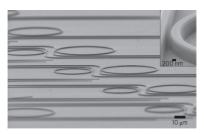


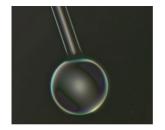

Whispering gallery mode (WGM) optical microresonator

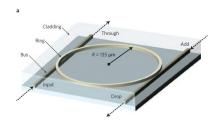

Confines light for long photon lifetime (high Q) and has small volume Enhances light-matter interaction in dielectric material

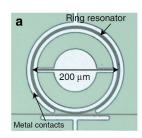
Dielectric microresonator platforms (Caltech, NIST, EPFL, OEwaves, Columbia, Harvard, Yale, INRS-EMT)





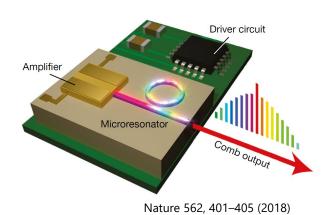






(Intracavity power) =
$$\frac{4\eta d_1 Q}{\omega_0} \times$$
 (Input power)

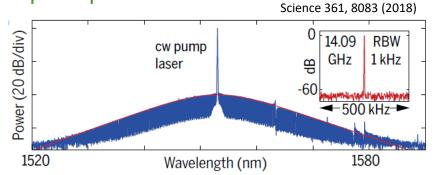
 ω_0 : laser frequency, d_1 : cavity FSR, Q: quality factor, η : coupling parameter


e.g. $\omega_0/2\pi=193$ THz, $d_1=100$ GHz, $Q=1\times 10^8$, $\eta=0.5$ (critical coupling)

10 mW input ⇒ 165 W intracavity

Application: Microresonator comb

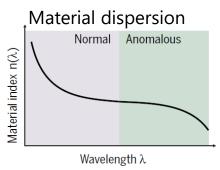
Target application: Microresonator frequency comb (Kerr comb)

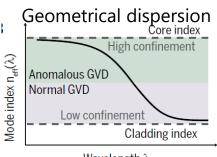

Four-wave mixing (FWM) $\omega_a + \omega_{b(a)} = \omega_c + \omega_d$ Degenerate Non-degenerate Pump Resonance Frequency

Threshold power for FWM

$$P_{\rm th} = \frac{\kappa^2 n_0^2 V_{\rm eff}}{8\eta \omega_0 c n_2} \propto \frac{V}{n_2 Q^2}$$

- Compact size
- Low energy consumption
- Broad bandwidth
- Large mode spacing ~1000 GHz


Optical spectrum of soliton

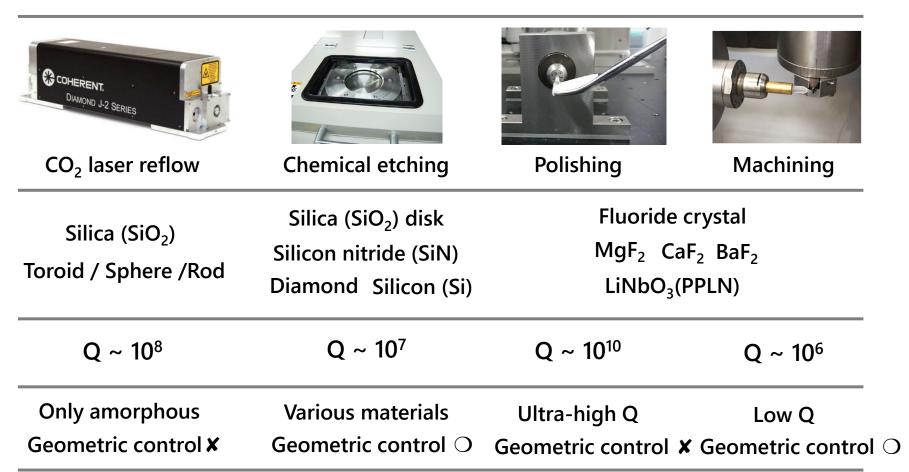


- Mode-locked state in Kerr comb (Kerr soliton)

$$\Psi(\mu) = \sqrt{d_2/2} \operatorname{sech}\left(\frac{\pi\mu}{2} \sqrt{\frac{d_2}{\zeta_0}}\right) \qquad d_2 = D_2/\kappa \zeta_0 = \pi^2 f^2/8$$

Microresonator dispersion

Wavelength λ


- Anomalous dispersion condition required

$$\beta_2 < 0 \ (D_2 > 0)$$
 $\beta_2 = \frac{d^2 \beta}{d\omega^2} = -\frac{nD_2}{cD_1^2}$

Microresonator fabrication methods

Mainstream microresonator fabrication methods

Microresonator fabrication methods

Combination of two methods

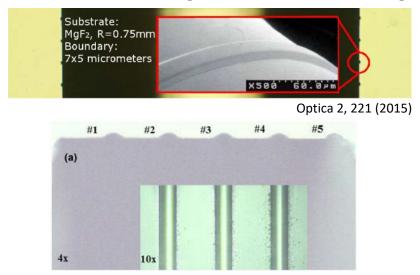
Polishing

Machining

Fluoride crystal
MgF₂ CaF₂ BaF₂
LiNbO₃(PPLN)

 $Q \sim 10^{10}$

 $Q \sim 10^6$


Ultra-high Q

Low Q

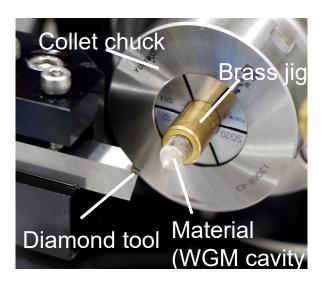
Form accuracy X

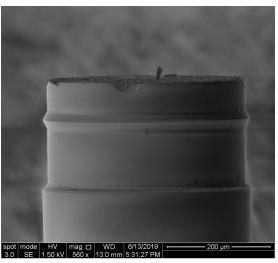
Form accuracy O

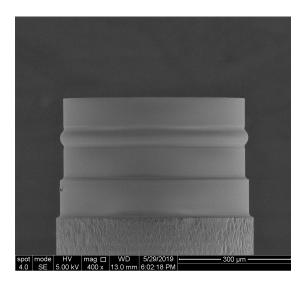
Crystalline resonators formed by hand polishing after diamond turning process (Q exceeding 108)

Optics Letters 42, 514 (2017)

- Ultra-high Q (Q>10⁹) achieved by polishing after computer-controlled machining process
- Additional hand polishing degrades predesigned geometry (disadvantage for dispersion tailoring)
- Never again producing the standard microresonators

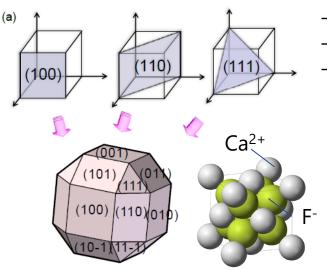

Motivation

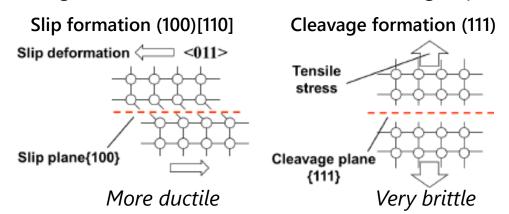



Motivation

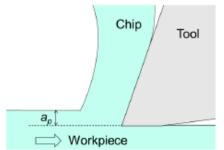
- Fabricate ultra-high Q crystalline microresonators (Q>108) by computer-controlled machining without polishing
- Explore the potential of dispersion engineering for crystalline microresonators towards soliton formation at broadband wavelengths

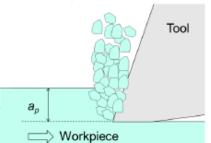
Fully computer-controlled ultra-precision machining for dispersion engineering

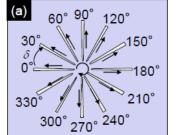


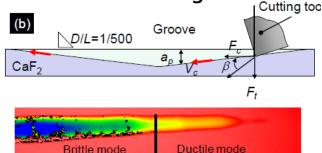

Machining of single crystal materials

Crystallographic image of CaF₂ material




- Plane of single crystal is defined as mirror index
- CaF₂ consists of only 3 planes (100), (110), (111)
- Cutting mode transition observed with cutting depth

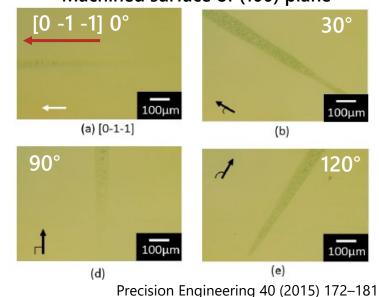



Cutting mode transition is observed depending on crystal anisotropy

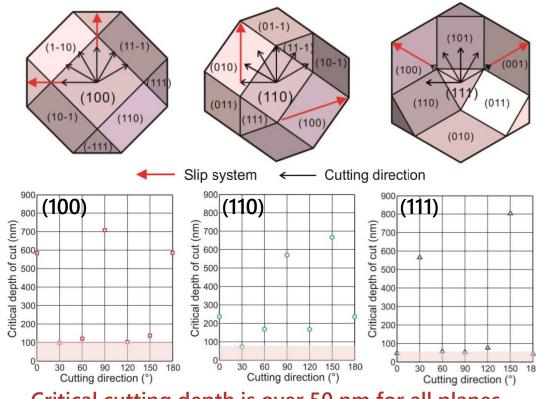
Ductile-mode cutting Brittle-mode cutting Transition to brittle mode as cutting material



Cutting depth < Critical depth Cutting depth > Critical depth


Orthogonal cutting experiment

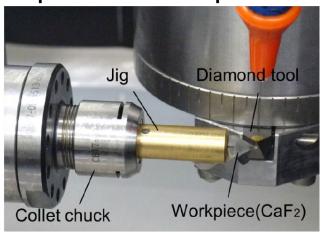
Experimental setup


Machined surface of (100) plane

"Objective" of orthogonal cutting experiment

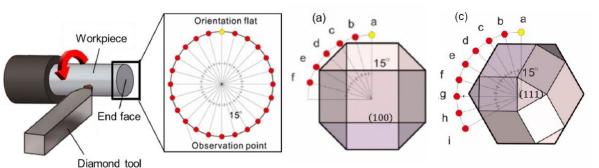
- Resonators must be fabricated with ductile-mode cutting
- Identify critical cutting depth for all crystal planes and cutting directions with orthogonal cutting experiment

Critical cutting depth vs direction for different planes

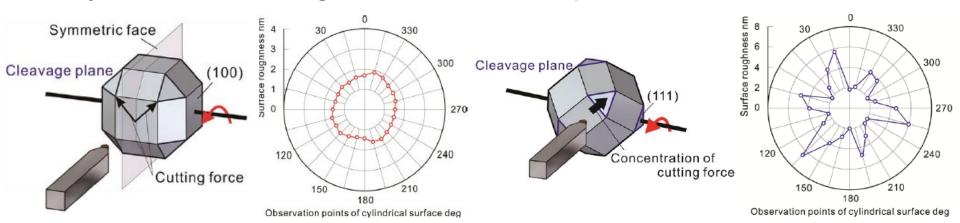


Critical cutting depth is over 50 nm for all planes

Cylindrical turning experiment



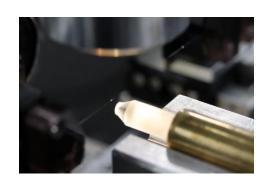
Experimental setup

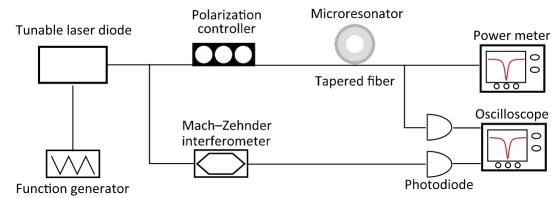


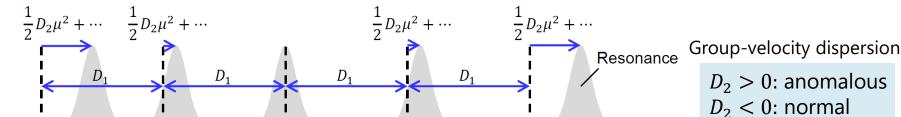
"Objective" of cylindrical turning experiment

- Cutting plane and direction are continuously and simultaneously changed when resonator is turned
- Investigate surface roughness of entire cylindrical surface

Cylindrical surface roughness for observation points with different end-faces


Observed smooth surface with end-face (100)


Observed surface clack with the end-face (111)


Experimental setup

Experimental setup for Q-factor and dispersion measurement

 ω_1

Resonance frequency: $\omega_m = \frac{2\pi mc}{Ln(\omega)}$

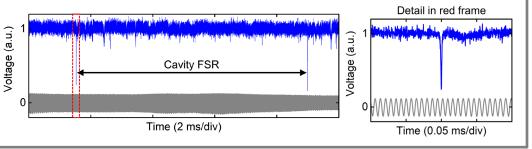
 ω_{-1}

Resonance frequencies are Taylor-expanded:

 ω_0

$$\omega_{\mu} = \omega_0 + D_1 \mu + \frac{1}{2} D_2 \mu^2 + \frac{1}{6} D_3 \mu^3 + \cdots$$

m: mode number

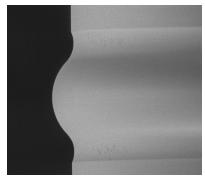

 ω_{-2}

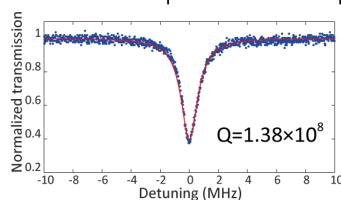
 μ : mode number offset (from pump $\mu = 0$)

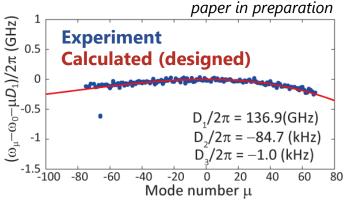
Mach-Zehnder interferometer calibrates frequency axis

ω

 ω_2

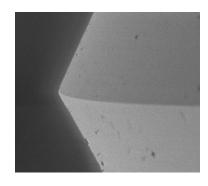

Measured Q-factor and dispersion

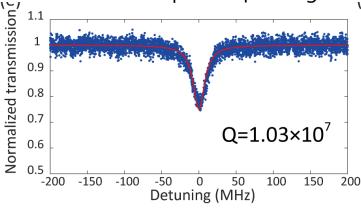


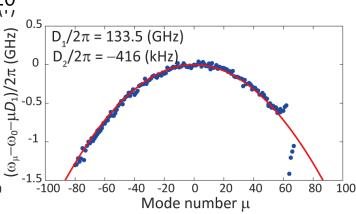

Crystalline microresonator fabricated "without polishing"

Spherical MgF₂ WGM

Diameter 508 μm Curvature 36 μm

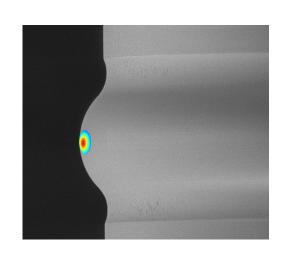


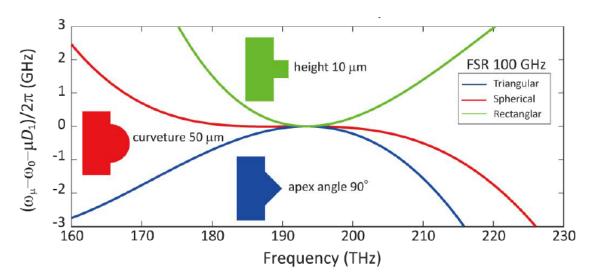




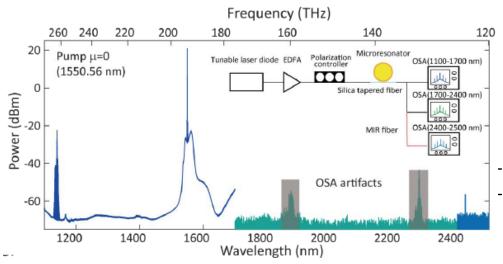
Triangular CaF₂ WGM

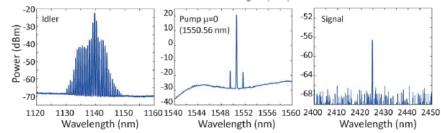
Diameter 502 μm Apex angle 120°




- Highest Q-factor exceeding 108 was observed in MgF₂ spherical WGM resonator
- Effect of crystal anisotropy and best end-face should be investigated
- MgF₂ is more suitable for Kerr comb generation as regards thermal stability

Ideal structure for µ-comb generation




Simulated dispersion for different resonator structure with 100 GHz FSR

Phase-matched four-wave mixing (FWM) in dispersion engineered microresonator

FWM sidebands spanning 1-octave Phase-matching via higher-order dispersion

S. Fujii et al., Optics Letters 44, 3146 (2019).

Summary

- Identified critical depth and for each end-face orientation to acheive ultraprecision machining of CaF₂ WGM microresonators
- Observed highest Q exceeding 10⁸ and microcomb without polishing process
- Investigated ideal WGM structure for 100-GHz FSR microcomb generation

Summary of crystalline microresonators fabricated without polishing

	I	

CaF₂ Spherical WGM

$$Q = 7.67 \times 10^7 \text{ FSR} = 129.8 \text{ GHz}$$

$$D_2/2\pi = -267 \text{ kHz}$$

$$Q = 6.07 \times 10^7 \text{ FSR} = 22.08 \text{ GHz}$$

$$D_2/2\pi = -2.3 \text{ kHz}$$

CaF₂ Triangular WGM Q = 1.03×10^7 FSR = 133.5 GHz $D_2/2\pi$ = -416 kHz

$$Q = 1.03 \times 10^7$$

$$D_2/2\pi = -416 \text{ kHz}$$

MgF₂ Spherical WGM

$$Q = 1.38 \times 10^8$$

$$Q = 1.38 \times 10^8$$
 FSR = 136.9 GHz

$$D_2/2\pi = -84.7 \text{ kHz}$$

$$Q = 2.1 \times 10^7$$

$$Q = 2.1 \times 10^7$$
 FSR = 21.61 GHz

$$D_2/2\pi = 4.86 \text{ kHz}$$

Thank you

<u>Acknowledgment</u>

This work is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant Number JP19H00873, JP18J21797 and Grant-in-Aid for JSPS Fellow; Amada Foundation; The Ministry of Education, Culture, Sports, Science and Technology (MEXT) Q-LEAP

We thank Dr. Y. Mizumoto, H. Kangawa, and Ms. Y. Hayama for their contribution of this work