

CLEO/Europe-EQEC 2019 | Jun. 23th

Saturable Absorption with CNT Coupled WGM and Fabrication of Er-doped Microresonator for On-chip Mode-locked Laser

<u>Riku Imamura¹</u>, Shun Fujii¹, Tomoki S. L. Prugger Suzuki¹, Rammaru Ishida¹, Hideyuki Maki^{2,4}, Lan Yang³, and Takasumi Tanabe¹

¹Department of Electronics and Electrical Engineering, Keio University, Yokohama 223-8522, Japan ²Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan ³Department of Electrical and Systems Engineering, Washington University, St Louis, Missouri 63130, USA ⁴PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

Copyright © Keio University

Outline

- Background & Objective
- Numerical model
- Saturable absorption of CNT
- Er-doped microresonator
- Summary

Background: mode-locked laser

[3] Sze Y. Set, IEEE J. Sel. Top. Quantum Electron., 10, 1, 137-146 (2004)

Copyright © Keio University | 3

Background: mode-locked fiber ring system

Realizing this system with microcavitycavity length: 13.3 m: 13.3 m> 200 μ m: repetition rate: 15 MHz > 1000 GHz

F. Wang, et al., Nat. Nanotechnol., 3, 738-743 (2008)

Copyright © Keio University | 4

Objective:

Mode-locked laser with microresonator

- high repetition rate (> GHz)
- small footprint
- on-chip integrability ightarrow

Photonic Structure Group, Keio University

1. Passive mode-locker **CNT**(saturable absorber)

Erbium ions

Numerical model

Model: Nonlinear Schrödinger equation

Saturable absorption of CNT

Optical deposition on fiber microtip

output

- By using optical deposited fiber tip, saturable absorption was observed

 By changing the gap distance between microtip and tapered fiber, the absorption can be controlled.

Copyright © Keio University | 7

rption was observed d tapered fiber, the absorption

Er-doped microresonator: Process flow

Er-doped microresonator: Process flow

Er-doped microresonator: Fabrication result

The thickness of sol-gel film is $\sim 1.8 \,\mu m$ with 6 layers ($\sim 300 \,nm/layer$).

Copyright © Keio University | 10

Photonic Structure Group, Keio University

undercutting silicon pillar

forming toroidal rim

Er-doped microresonator: Measurement

Copyright © Keio University | 11

Objective:

On-chip mode-locked laser with CNT and Er-doped microresonator

Achievement:

- Saturable absorption of CNT
 - SA is obtained by using microtip
- Er-doped microresonator
 - Fabrication of Er-doped microtoroid ____
 - Lasing at ~ 1580 nm

Future plan:

- Measuring gain (g_0) of Er-doped microtoroid
- Integration of CNT and Er-doped microtoroid

Copyright © Keio University | 12

Thank you.

Acknowledgement: This work was supported by JSPS KAKENHI (JP18K19036, JP19H00873), Amada Foundation, and MEXT Q-LEAP.