

CLEO/Europe-EQEC 2019 June 24, 2019, 14:30-14:45 PM

Efficient coupling of silica toroid microresonator to silicon chip with photonic crystal waveguide

Yuyang Zhuang^{1,2)}, Hajime Kumazaki¹⁾, Shun Fujii¹⁾, and Takasumi Tanabe¹⁾

¹⁾ Department of Electronics and Electrical Engineering, Keio University
 ²⁾ Nanjing University of Posts and Telecommunications

Part 1. Background

Part 2. Motivation

Part 3. Experiments/Resuls

Part 4. Conclusion

X

Background

Whispering gallery mode (WGM) microcavity

D. K. Armani et al, Nature 421, 925 (2003)

Silica toroid microcavity

Ultra-high quality factor (Q)

- Q~10⁸
- V~100 (λ/n)³

Applications

- Frequency Kerr comb
- Optical buffer
- Low power optical switch

Background

Coupling structures

Tapered fiber

High coupling efficiency >99.97% [1]

- Low insertion loss
 ~99.4% [2]
- Tunable
- Sensitive

Fragile

[1] S. M. Spillane, et al , Phys. Rev. Lett., **91**, 043902, (2003).
[2] T. Aoki, et al, Jpn. J. Appl. Phys. **49**, 118001 (2010).

Background

Coupling structures

A. A. Savchenkov et al, Opt. Lett. 15, 3468 (2015)

~80 % [3]

Materials: silica, diamond, rutile, and sapphire, etc.

Relatively robust and simple

Critical alignment angle

[3] M. L. Gorodetsky and V. S. Ilchenko, J. Opt. Soc. Am. B, **16**,147 (1999).

Background

Coupling structures

G. Liu et al, Optica 5, 219 (2018)

M. Anderson et al, Opt. Lett. **43**, 2107 (2018) Plannar waveguide Coupling efficiency

95.7% for BaF₂, 98.1% for CaF₂ [6]

- Relatively robust and simple
- Fabrication difficulty
- Small index difference coupling
 - Si waveguide w/ LiNbO₃ cavity (3.48 w/ 2.21)
 [4] M. Soltani et al, Opt. Lett. 41, 4375 (2016)
 - Si₃N₄ waveguide w/ MgF₂ cavity (2.00 w/ 1.37)
 [5] G. Liu et al, Optica. 5, 219 (2018)
- SiO₂ waveguide w/ CaF₂ cavity (1.44 w/ 1.43)
 [6] M. Anderson et al, Opt. Lett. 43, 2106 (2018)

Motivation

Motivation

Couple light into Si-based PhC-WG

Fabrication of WGM cavity

Fabrication of PhC-WG

Fabrication process

CMOS compatible.

Silica cladding is removed to form an air-bridge type structure.

Part 2

Dispersion of PhC-WG

D Dispersion line map

Phase-matching

Part 3

Experimental setup

X

Transmission spectrum

\boxtimes

□ Transmission spectrum

X

Transmission spectrum

X

Transmission spectrum

X

Results

\boxtimes

Transmission spectrum

□ Transmission spectrum at critical coupling

Relationship of efficiency and deviation

□ Fiber w/ Si-PhC coupling

3-D view

Side view

Fundamental mode of fiber

□ Transmission spectrum (W0.98)

□ Transmission spectrum (W1.02)

D Dispersion line map

Photonic Structure Group, Keio University

Comparing with other structures

Conclusion

- Merits of the proposed coupling structure
 - High coupling efficiency: 99.5% (~23 dB)
 - Robust and compact (10 μ m × 110 μ m).
 - CMOS compatible: easy to fabricate.
 - Can filter high order modes.
 - Polarization depended.

We demonstrated efficient coupling a low-index material microcavity to a high-index material waveguide.

Acknowledgement: This work was supported by JSPS KAKENHI Grant Number JP18K19036

Thank you for your attention!

Keio Univ