CLEO:2019 (STh4J.6) May 9, 2019

Ultrahigh-Q Crystalline Microresonator Fabricated with Computer-controlled Machining without Polishing

<u>Shun Fujii</u>¹, Mika Fuchida¹, Hikaru Amano², Ryo Suzuki¹, Yasuhiro Kakinuma², and Takasumi Tanabe¹

- 1. Department of Electronics and Electrical Engineering,
 - Faculty of Science and Technology, Keio University
- 2. Department of System Design Engineering,

Faculty of Science and Technology, Keio University

Whispering gallery mode (WGM) optical microresonator

Confines light for long photon lifetime (high Q) and has small volume Enhances light-matter interaction in dielectric material

Dielectric microresonator platforms (Caltech, NIST, EPFL, OEwaves, Columbia, Harvard, Yale, INRS-EMT)

Target application: Microresonator frequency comb (Kerr comb)

Threshold power for FWM

$$P_{\rm th} = \frac{\kappa^2 n_0^2 V_{\rm eff}}{8\eta \omega_0 c n_2} \propto \frac{V}{n_2 Q^2}$$

- Compact size
- Low energy consumption
- Broad bandwidth
- Large mode spacing ~1000 GHz

Optical spectrum of soliton

 $\Psi(\mu) = \sqrt{d_2/2} \operatorname{sech}$

- Mode-locked state in Kerr comb (Kerr soliton)

 $d_2 = D_2/\kappa$

 $\zeta_0 = \pi^2 f^2 / 8$

Microresonator dispersion

- Anomalous dispersion condition required

$$\beta_2 < 0 \ (D_2 > 0) \qquad \beta_2 = \frac{d^2 \beta}{d\omega^2} = -\frac{nD_2}{cD_1^2}$$

Microresonator fabrication methods

Δ

×

Mainstream microresonator fabrication methods

COHERENT. DIAMOND J-2 SERIES		e escret	
CO ₂ laser reflow	Chemical etching	Polishing	Machining
Silica (SiO ₂) Toroid / Sphere /Rod	Silica (SiO ₂) disk Silicon nitride (SiN) Diamond Silicon (Si)	Fluoride crystal MgF ₂ CaF ₂ BaF ₂ LiNbO ₃ (PPLN)	
Q ~ 10 ⁸	Q ~ 10 ⁷	Q ~ 10 ¹⁰	Q ~ 10 ⁶
Only amorphous Geometric control X	Various materials Geometric control O	Ultra-high Q Geometric control X	Low Q Geometric control

Microresonator fabrication methods

5

Motivation

- Fabricate ultra-high Q crystalline microresonators (Q>10⁸) by computer-controlled machining without polishing

- Explore the potential of dispersion engineering for crystalline microresonators towards soliton formation at broadband wavelengths

Fully computer-controlled ultra-precision machining for dispersion engineering

Crystallographic image of CaF₂ material

Cutting mode transition is observed depending on crystal anisotropy

Cutting depth < Critical depth Cutting depth > Critical depth

Precision Engineering 40 (2015) 172-181

Orthogonal cutting experiment

Experimental setup

Machined surface of (100) plane

"Objective" of orthogonal cutting experiment

- Resonators must be fabricated with ductile-mode cutting
- Identify critical cutting depth for all crystal planes and cutting directions with orthogonal cutting experiment

Critical cutting depth vs direction for different planes

Critical cutting depth is over 50 nm for all planes

Precision Engineering 40 (2015) 172–181

Cylindrical turning experiment

Cylindrical surface roughness for observation points with different end-faces

Observed smooth surface with end-face (100)

Observed surface clack with the end-face (111)

Precision Engineering 40 (2015) 172–181 Precision Engineering 49 (2017) 104–114

10 Ultra-precision machining procedure

Fabrication flow of ultra-precision turning for triangular cross-section microresonator

The tip angle and the aspect ratio are pre-designed and formed by computer-controlled turning, which is attractive with respect to dispersion engineering

Experimental setup for Q-factor and dispersion measurement

- Measurements were performed after removing chips by cleaning with lens tissue
- Experimental measured dispersions agree well with simulation results
- Spherical cross-sectional shape shows higher Q than triangular shape

- Highest Q-factor exceeding 10⁸ was observed in MgF₂ spherical WGM resonator
- Effect of crystal anisotropy and best end-face should be investigated
- MgF₂ is more suitable for Kerr comb generation as regards thermal stability

- Investigated machining of single crystal material
- Identified critical depth and for each end-face orientation to acheive ultraprecision machining of CaF₂ WGM microresonators
- Observed highest Q exceeding 10⁸ without polishing process

Summary of crystalline microresonators fabricated without polishing

Thank you

– <u>Acknowledgment</u>

This work is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant Number JP19H00873, JP18J21797 and Grant-in-Aid for JSPS Fellow; Amada Foundation; The Ministry of Education, Culture, Sports, Science and Technology (MEXT) Q-LEAP

We thank Dr. Y. Mizumoto, H. Kangawa, and Ms. Y. Hayama for their contribution of this work