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2 Ultrahigh-Q optical microresonators

Whispering gallery mode (WGM) optical microresonator

Confines light for long photon lifetime (high Q) and has small volume

Enhances light-matter interaction in dielectric material

4nd, Q

(Intracavity power) = X (Input power)

0
wy: laser frequency, d;: cavity FSR,
Q: quality factor, n: coupling parameter

Dielectric microresonator platforms (Caltech, NIST, EPFL, OEwaves, Columbia, Harvard, Yale, INRS-EMT)

e.g. wo/2m =193 THz, d; = 100 GHz,
Q =1 x 108 71 = 0.5 (critical coupling)

10 mW input = 165 W intracavity




3 Application: Microresonator comb

Target application: Microresonator frequency comb (Kerr comb)
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- Compact size

- Low energy consumption

- Broad bandwidth

- Large mode spacing ~1000 GHz

Microresonator dispersion
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- Mode-locked state in Kerr comb (Kerr soliton)

- Anomalous dispersion condition required
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Microresonator fabrication methods

Mainstream microresonator fabrication methods

%

CO, laser reflow Chemical etching Polishing Machining
ili i i Fluoride crystal
Silica (Si0,) Silica (SiO,) disk y
Toroid / Soh Rod Silicon nitride (SiN) MgF, CaF, BaF,
oroid/Sphere /Rod i mond Silicon (Si) LiNbO,(PPLN)
Q ~ 108 Q ~ 10/ Q ~ 107 Q ~ 109
Only amorphous Various materials Ultra-high Q Low Q
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Microresonator fabrication methods

Combination of two methods
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Polishing Machining

Fluoride crystal
Mng CaFZ BaFZ
LiNbO;(PPLN)

Q ~ 107 Q ~ 106
Ultra-high Q Low Q
Form accuracy X Form accuracy O

Crystalline resonators formed by hand polishing
after diamond turning process (Q exceeding 108)

Substrate:
MgFz2, R=0.75mm
Boundary:

7%5 micrometers §

Optica 2, 221 (2015)
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Optics Letters 42, 514 (2017)
- Ultra-high Q (Q>10°) achieved by polishing after
computer-controlled machining process

- Additional hand polishing degrades predesigned
geometry (disadvantage for dispersion tailoring)

- Never again producing the standard microresonators



6 Motivation

Motivation

- Fabricate ultra-high Q crystalline microresonators (Q>108) by computer-controlled
machining without polishing

- Explore the potential of dispersion engineering for crystalline microresonators
towards soliton formation at broadband wavelengths

Fully computer-controlled ultra-precision machining for dispersion engineering
— < 2N
A

Material
(WGM cavity

Diamond tool



Machining of single crystal materials

Crystallographic image of CaF, material

Slip plane{100}

More ductile

T

T

- Plane of single crystal is defined as mirror index
- CaF, consists of only 3 planes (100), (110), (111)
- Cutting mode transition observed with cutting depth

Slip formation (100)[110]

Slip deformation <——1 <011=
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Cleavage formation (111)
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Cutting mode transition is observed depending on crystal anisotropy

Ductile-mode cutting

chip |/ /
P/ Tool /

—» Workpiece
Cutting depth < Critical depth Cutting depth > Critical depth

— Workpiece

Brittle-mode cutting Transition to brittle mode as cutting material
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Precision Engineering 40 (2015) 172-181



8 Orthogonal cutting experiment

Experimental setup
“Objective” of orthogonal cutting experiment

Mkl - Resonators must be fabricated with ductile-mode cutting
- Identify critical cutting depth for all crystal planes and
cutting directions with orthogonal cutting experiment

Cutting tool ——————————

-

Critical cutting depth vs direction for different planes

Machined surface of (100) plane
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Precision Engineering 40 (2015) 172181 Critical cutting depth is over 50 nm for all planes



9 Cylindrical turning experiment

Experimental setup “Objective” of cylindrical turning experiment

- Cutting plane and direction are continuously and
simultaneously changed when resonator is turned
- Investigate surface roughness of entire cylindrical surface

Orientation flat (a) b a
i c
Workpiece d ®
]
2 15
f o T
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Collet chuck Workpie End face (100)
Observation point
Diamond tool

Cylindrical surface roughness for observation points with different end-faces
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Observed smooth surface with end-face (100) Observed surface clack with the end-face (111)
Precision Engineering 40 (2015) 172-181 Precision Engineering 49 (2017) 104-114



10 Ultra-precision machining procedure

Experimental setup and machine used Manufacturing parameters

- ) I

- Rotation speed [min-T]

- Cutting speed [m/min]

- Feed per revolution [um/rev]
- Depth of cut [nm]

- End-face orientation

- Lubricant
Material - Nose radius (cutting tool)
(WGM cavit - Rake angle (cutting tool)

Fabrication flow of ultra-precision turning for triangular cross-section microresonator
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- The tip angle and the aspect ratio are pre-designed and formed by computer-controlled
turning, which is attractive with respect to dispersion engineering



11 Experimental setup

Experimental setup for Q-factor and dispersion measurement
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12

Measured Q-factor and dispersion

CaF, crystalline microresonator fabricated “ without polishing”

Spherical WGM

Diameter 512 pm
Curvature 36 um

Triangular WGM
Diameter 502 pm
Apex angle 120°
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- Measurements were performed after removing chips by cleaning with lens tissue
- Experimental measured dispersions agree well with simulation results
- Spherical cross-sectional shape shows higher Q than triangular shape



13 With MgF, crystal

Magnesium fluoride has a “rutile” structure
- Crystallographic image is more complex than that of CaF,
- Cutting condition will also be complex...
Knoop hardness (hardness of a materials)
- MgF,: 415 (kg/mm?)
- CaF,: 158.3 (kg/mm?)

Cutting condition as with CaF, paper in preparation

Spherical WGM
Diameter 508 um
Curvature 36 um

o
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o
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- Highest Q-factor exceeding 108 was observed in MgF, spherical WGM resonator
- Effect of crystal anisotropy and best end-face should be investigated
- MgF, is more suitable for Kerr comb generation as regards thermal stability



14 Summary

- Investigated machining of single crystal material

- Identified critical depth and for each end-face orientation to acheive ultra-

precision machining of CaF, WGM microresonators

- Observed highest Q exceeding 108 without polishing process

Summary of crystalline microresonators fabricated without polishing

Q =7.67 x 107 FSR =129.8 GHz
Q = 6.07 x 10" FSR = 22.08 GHz

CaF, Spherical WGM

D,/2m = -267 kHz
D,/2mt = -2.3 kHz

CaF, Triangular WGM q =1.03 x 107 FSR =133.5 GHz

D,/2m = -416 kHz

Q =1.38 x 108 FSR = 136.9 GHz

MgF, Spherical WGM
Q=21x10" FSR = 21.61GHz

D,/2mt = -84.7 kHz
D,/21t = 4.86 kHz
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