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WGM microcavity
Microcavity = a device that can cage photons

~80 μm

~ 5 μm
Si

SiO2

SEM

Photonic crystal nanocavity

200 nm Si

Courtesy by NTT Basic Research Labs.

Key device: high Q microcavities

V = >100 (λ/n)3

Q = 108
V = 1.5 (λ/n)3

Q = 106

1. Background
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High Q microcavities
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1. Background & motivation
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Outline
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1. High-Q mode on Si chip w/ tapered fiber

2. Efficient coupling of WGM w/ Si chip

3. Coupling of WGMs for optical buffering
W. Yoshiki, et al., Sci. Rep. 7, 28758 (2017).

T. Tetsumoto, et al., Opt. Express 23, 16256 (2015).
Y. Ooka, et al., Sci. Rep. 5, 11312 (2015).

Y. Zhuang, et al., CLEO/Europe, CK-5.2, Munich, 23-27 June (2019).
Y. Zhuang, et al., (in preparation)
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Outline
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1. High-Q mode on Si chip w/ tapered fiber

2. Efficient coupling of WGM w/ Si chip

3. Coupling of WGMs for optical buffering
W. Yoshiki, et al., Sci. Rep. 7, 28758 (2017).

T. Tetsumoto, et al., Opt. Express 23, 16256 (2015).
Y. Ooka, et al., Sci. Rep. 5, 11312 (2015).

Y. Zhuang, et al., CLEO/Europe, CK-5.2, Munich, 23-27 June (2019).
Y. Zhuang, et al. (in preparation)
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T. Tanabe et al., Nature Photon. 1, 49 (2007).

Ring-down & spectrum
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Barrier line defect (W0.98)
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τ = 1.01 ns Mode profile
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Mode gap 
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Ultrahigh-Q w/ mode-gap confined
width-modulated line-defect PhC nanoacvity
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Localization on Si chip w/ tapered fiber
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Dispersion diagram of 2D PhC waveguides
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Localization on Si chip w/ tapered fiber
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Fabrication w/ CMOS process

Width-modulated line defect cavity

Max amount of shift : 9 nm

9 nm

9 nm

Y Ooka, et al., Sci. Rep. 5, 11312 (2015).
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Experimental

Q = 7.1×106 V = 2.4 (λ/n)3

Q = 2.2×105

NumericalPhC nanocavity fabrication

Localization on Si chip w/ tapered fiber
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Post-formation of PhC

A. Yokoo, et al., Nano lett. 11, 3634-42 (2011).

Background
Photonic crystal (PhC) nanocavity

 Controlability of resonant 
wavelength &  position 

 High Q cavity (> 106) 
 Relocation of the cavity not 

possible

T. Yoshie, et al., Nature 432, 
200-203 (2004).

Quantum opticsOptical signal 
processing

T. Tanabe, et al., Appl. Phys. 
Lett. 96, 101103 (2010).

Advantages
 High Q & extremely small V
 Suitable for integration
Disadvantages
 Coupling to fiber is poor
 Collection efficiency is low

Reconfigurable nanocavity
Localization on Si chip w/ tapered fiber
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Waveguide + waveguide = high Q cavity ?

Photonic crystal waveguide Nano taper waveguide

Cavity ?

+

Localization on Si chip w/ tapered fiber
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Principle of cavity formation
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Effective refractive index 
change results in formation of 

modegap cavity
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Real space

Modegap

Cavity formation model

Band gap

Transmission

Gap

Fiber

PhC
waveguide

T. Tetsumoto, et al., Opt. Express 23, 16256 (2015).

Localization on Si chip w/ tapered fiber
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Numerical calculation
Design

Radius of curvature 
125 μm

Silica fiber
(r = 500 nm)

PhC waveguide

x

y

z x

z

y
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・
・
・

【Design parameters】
Lattice constant: 𝑎𝑎 = 420 nm
Diameter of air holes: 253 nm
Width of waveguide: 0.98 3𝑎𝑎
Thickness of slab: 0.5a

Profile of Ey field
in xy plane

𝑄𝑄 = 1.4 × 107, 𝑉𝑉 = 1.9 𝜆𝜆/𝑛𝑛 3

was obtained

Profile of Ey field
in zx plane

Result

Localization on Si chip w/ tapered fiber
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Experimental setup
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VOA PMTLD

xyz Stage

TLD: Tunable Laser Diode, VOA: Variable Optical Attenuator, 
PC: Polarization Controller, PM: Power Monitor 

Nanofiber

PhC waveguide (W0.98)
Lattice constant 420 nm,
Hole diameter 253 nm
Slab thickness210 nm

Nanofiber

PC

Transmittance loss: Typically -10dB, 
Best -1dB

PhC waveguide
Diameter: ~800nm

2. High-Q reconfigurable PhC nanocavity

T. Tetsumoto, et al., Opt. Express 23, 16256 (2015).

Localization on Si chip w/ tapered fiber
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Experimental results

𝑸𝑸𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 = 𝟓𝟓.𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟓𝟓
(CE 39%)

Nanofiber
PhC waveguide

Transmission spectrum

Off-resonance

On-resonance
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Infrared red image
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Localization on Si chip w/ tapered fiber
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Measurement of Q and CE of FCPC
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𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1 = 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−1 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖−1
Depends on 
fiber radius

Depends on fiber 
contact condition 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖

Nanofiber

Cavity

𝑸𝑸𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 = 𝟔𝟔.𝟕𝟕 × 𝟏𝟏𝟏𝟏𝟓𝟓
（CE 6.6%）

𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 = 6.8 × 105
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 3.9 × 107

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 6.1 × 103
（CE 99.6%）

𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 = 1.1 × 104
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1.3 × 104

Maximization of Q Maximization of CE
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Localization on Si chip w/ tapered fiber
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Resonant wavelength tuning
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xyz Stage

Method
PhC

waveguide
Nanofiber

27 pm

Cavity length is shortened
⇒Blue shift of resonant 

wavelength

Fixed

Moves 100 nm 
downwards

Tuning sensitivity
Wavelength shift

Stage shif𝑡𝑡
= 0.27 pm/nm

T. Tetsumoto, et al., Opt. Express 23, 16256 (2015).

Localization on Si chip w/ tapered fiber



Photonic Structure Group, Keio University

Nanofiber assisted reconfigurable PhC nanocavity

Copyright © Keio University ｜ 17

Fiber coupled PhC nanocavity (FCPC)
 Reconfigurable
 𝑸𝑸 = 𝟓𝟓.𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟓𝟓，coupling efficiency (CE) of 39%
(Highest value for reconfigurable PhC nanocavity)
 𝑄𝑄 = 6.1 × 103, CE of 99.6%

T. Tetsumoto, et al., Opt. Express 23, 
16256-16263 (2015).

Localization on Si chip w/ tapered fiber
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Outline
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1. High-Q mode on Si chip w/ tapered fiber

2. Efficient coupling of WGM w/ Si chip

3. Coupling of WGMs for optical buffering
W. Yoshiki, et al., Sci. Rep. 7, 28758 (2017).

T. Tetsumoto, et al., Opt. Express 23, 16256 (2015).
Y. Ooka, et al., Sci. Rep. 5, 11312 (2015).

Y. Zhuang, et al., CLEO/Europe, CK-5.2, Munich, 23-27 June (2019).
Y. Zhuang, et al. (in preparation)
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WGM microcavity
Microcavity = a device that can cage photons

~80 μm

~ 5 μm
Si

SiO2

SEM

Photonic crystal nanocavity

200 nm Si

Courtesy by NTT Basic Research Labs.

Key device: high Q microcavities

V = >100 (λ/n)3

Q = 108
V = 1.5 (λ/n)3

Q = 106

Coupling of WGM w/ silicon PhC waveguide Photonic Structure Group, Keio University
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Hybrid system consisting of two different cavities

Copyright © Keio University ｜ 20

WDM of
optical Kerr comb 

Optical tunable 
buffering

Storage

Gate DeMUX MUX

EO modulators

Operating principal: Optical Kerr effect
 Frequency Kerr comb
 Low power optical switch
 Optical buffer

Silica toroid microcavity

Operating principal: Carrier plasma effect
 Fast optical switching
 Photodetection
 EO modulation

Si Photonic crystal nanocavity
Ultra-high Q (Long storage time) Ultra-small V (Quick response)

Coupling of WGM w/ silicon PhC waveguide
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Sample preparation

1. Resist 
application

2. Dicing 4. XeF2
etching

5. CO2
laser reflow

Fabrication procedure 3. Resist
removalSilica disk

SiO2

Si

Coupling of WGM w/ silicon PhC waveguide
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Sample preparation
Fabrication procedure

Diameter 55 μm

Edge of the substrate
Fabricated structure

FSR : ~10 nm

1. Resist 
application

2. Dicing 4. XeF2
etching

5. CO2
laser reflow

3. Resist
removalSilica disk

SiO2

Si

Coupling of WGM w/ silicon PhC waveguide
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Sample preparation
Fabrication procedure

Diameter 55 μm

Edge of the substrate
Fabricated structure

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1.0 × 106

Fabrication procedure
1. Resist 
application

2. Dicing 4. XeF2
etching

5. CO2
laser reflow

3. Resist
removalSilica disk

SiO2

Si

Coupling of WGM w/ silicon PhC waveguide
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PWM: Powermeter
DAQ: Data acquation

Experimental setup

Experimental setup
Coupling of WGM w/ silicon PhC waveguide
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Result: Transmission spectrum
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Coupling of WGM w/ silicon PhC waveguide
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Result: Transmission spectrum
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Coupling of WGM w/ silicon PhC waveguide
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Nanofiber vs. PhC waveguide
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Coupling of WGM w/ silicon PhC waveguide
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Dispersion of a PhC waveguide (W0.98)
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Coupling of WGM w/ silicon PhC waveguide
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Effective index of waveguide
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Coupling of WGM w/ silicon PhC waveguide
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 Transmission spectrum vs voltage
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Piezo controller

Dip depth (coupling) at different distances
Coupling of WGM w/ silicon PhC waveguide
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Dip depth (coupling) at different distances

Copyright © Keio University ｜ 31
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Summary

Achieved extremely efficient coupling 
between silica (n=1.4) WGM microcavity with 
silicon (n=3.4) photonic crystal waveguide

1.0

1.5

2.0

2.5

Wavelength (nm) 

Ef
fe

ct
iv

e 
in

de
x 

n e
ff

0.5
1380 1420 1460 1500 1540

w=480 nm

TE0

W0.98

x y

z

y-even

(c)

Air line
Nanowire WG

Air-bridge PhC WG

0.5
   

 
 

 

 

 

Coupling of WGM w/ silicon PhC waveguide

■ High coupling efficiency: 99.5% (~23 dB)
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Outline
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1. High-Q mode on Si chip w/ tapered fiber

2. Efficient coupling of WGM w/ Si chip

3. Coupling of WGMs for optical buffering
W. Yoshiki, et al., Sci. Rep. 7, 28758 (2017).

T. Tetsumoto, et al., Opt. Express 23, 16256 (2015).
Y. Ooka, et al., Sci. Rep. 5, 11312 (2015).

Y. Zhuang, et al., CLEO/Europe, CK-5.2, Munich, 23-27 June (2019).
Y. Zhuang, et al. (in preparation)
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Operating principal: Optical Kerr effect
 Frequency Kerr comb
 Low power optical switch
 Optical buffer

Silica toroid microcavity

Operating principal: Carrier plasma effect
 Fast optical switching
 Photodetection
 EO modulation

Si Photonic crystal nanocavity

Silica toroid [10]

Si MH [1]

Si L3 [2]

Si beam [4]

PhCs

Si H0 [3]
Si beam
w/ slot [5]

Si [6]

Diamond [8]

Si3N4 [7]

MgF2 [12]

CaF2 [11]

SiO2 sphere [13]

SiO2 disk [9]

[1] Opt. Express 25, 1769-77 (2017)
[2] Appl. Phys. Lett. 104, 241101 (2014)
[3] Appl. Phys. Lett. 105, 101101 (2014)
[4] Appl. Phys. Lett. 94, 121106 (2009)
[5] Opt. Express 21, 32468-83 (2013)
[6] Opt. Express 18, 18235-42 (2010)
[7] Optica 4, 619-24 (2017)
[8] Nat. Photon. 8, 369–74 (2014)
[9] Nat. Photon. 6, 369–73 (2012)
[10] Appl. Phys. Lett. 85, 6113 (2004)
[11] Opt. Express 15, 6768-73 (2007) 
[12] Opt. Express 23, 7713-21 (2015)
[13] Opt. Lett. 23, 247–9 (1998).
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Ultra-high Q (Long storage time) Ultra-small V (Quick response)

Hybrid system consisting of two different cavities
Coupling of WGMs for optical buffering
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WDM of
optical Kerr comb 

Optical tunable 
buffering

Storage

Gate DeMUX MUX

EO modulators

Operating principal: Optical Kerr effect
 Frequency Kerr comb
 Low power optical switch
 Optical buffer

Silica toroid microcavity

Operating principal: Carrier plasma effect
 Fast optical switching
 Photodetection
 EO modulation

Si Photonic crystal nanocavity
Ultra-high Q (Long storage time) Ultra-small V (Quick response)

Hybrid system consisting of two different cavities
Coupling of WGMs for optical buffering
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Whispering gallery mode cavity

Whispering gallery mode cavities

C
R

IT C. Zheng et al., Opt. Express 
20, 18319–18325 (2012).

B. Peng et al., Opt. Lett. 
37, 3435-3437 (2012).

C. Schmidt et al., Phys. Rev. A 85, 033827 (2012).

Si

SiO2

10 um

シリカロッ
ド

3.0 mm

5 cavities

SiO2 CaF2

Tuning methods
 Thermo-optic tuning 

(e.g. Armani et al., Appl. Phys. Lett. 22, 5439- (2004))
 Pressure tuning

(e.g. Ilchenko et al., Opt. Commun. 145, 68- (1998))

Silica rod (Q>108) CaF2 disk (Q>1010)

Silica toroid (Q>108) Silica sphere (Q>108)

Slow response  > 1 μs

Coupling of WGMs for optical buffering
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Objective

To achieve all-optical tunable buffering 
using the Kerr effect in coupled ultra-high-Q
silica toroid microcavities
Kerr effect Silica toroid microcavity
 Changes refractive index 

instantaneously.
 Employed for all-optical switching and 

frequency conversion.

 Ultra-high Q factor (~4 x 108)
 Small mode volume (~ 200 μm3)
 On-chip fabrication

T. Kippenberg et al., Appl. Phys. Lett. 85, 6113 (2004).

Si

SiO2

W. Yoshiki, & T. Tanabe Opt. Express 22, 24332-24341(2014).
W. Yoshiki, T. Tanabe et al., Opt. Lett., 41, 5482-5485 (2016).

Coupling of WGMs for optical buffering



Photonic Structure Group, Keio University

Copyright © Keio University 

Introduction: All-optical “tunable” buffering

Principle

Coupling of WGMs for optical buffering



Photonic Structure Group, Keio University

Copyright © Keio University 

Introduction: All-optical “tunable” buffering

Principle

Coupling of WGMs for optical buffering



Photonic Structure Group, Keio University

Copyright © Keio University 

Device preparation

Silica toroid microcavity on an edge
 Shrinkage owing to laser reflow  Use of edge silica toroid microcavity

Fabrication
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Optical modes employed for experiments

 Three modes: M1, M2 (signal) and M3 (control).
 M1: ultra-high Q (~2.5 x107)
 M2 & M3: moderate Q (~106)
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Observation of coupling

Different gap Different temperature

Temp. change

G
ap
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Experimental setup

TLS: Tunable laser source / IM: Intensity modulator / EDFA: Erbium-doped fiber amplifier
VOA: Variable optical attenuator / BPF: Band-pass filter / PC: Polarization controller
PD: Photodetector / OSO: Optical sampling oscilloscope / PPG: Pulse pattern generator

Coupling of WGMs for optical buffering
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Experimental results (1)

Buffering operation

All-optical tunable buffering / 10-ns pulse buffered for 20 ns
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Experimental results (2)

Control pulse width vs Signal output

H. Lee et a., Nat. Commun. 3, 867 
(2012).

 Output efficiency: ~10% (due to spectral mismatch)
 Equivalent light attenuation: 1.1 dB/m

State-of-art “fixed” on-chip 
optical buffer: ~0.1 dB/m
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Summary

 First attempt to dynamically control 
CMIT w/ ultra-high Q WGM cavities.

 10-ns signal pulse can be buffered 
for 20 ns.

Achieved all-optical tunable buffering 
using the Kerr effect in coupled ultra-
high-Q silica toroid microcavities
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Summary

Copyright © Keio University ｜ 47

1. High-Q mode on Si chip w/ tapered fiber

2. Efficient coupling of WGM w/ Si chip

3. Coupling of WGMs for optical buffering
W. Yoshiki, et al., Sci. Rep. 7, 28758 (2017).

T. Tetsumoto, et al., Opt. Express 23, 16256 (2015).
Y. Ooka, et al., Sci. Rep. 5, 11312 (2015).

Y. Zhuang, et al., CLEO/Europe, CK-5.2, Munich, 23-27 June (2019).
Y. Zhuang, et al. (in preparation)
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