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Thesis Abstract

Optical wavemeters and spectrometers are devices that take light as input and are

able to recognize the di�erent frequency components in the input signal. These

devices have been used in various applications including optical communication and

food monitoring. The main issue is that they usually consist of grating structures,

which make the devices bulky and expensive. By using nanophotonic technolo-

gies, it becomes possible to miniaturize these devices and make it possible to easily

integrate them into optical systems. Therefore, there have been some trials using

photonic crystals (PhC), but the operation usually relies on precisely controlled

resonant structures which are di�cult to achieve because of the presence of fabri-

cation errors in such nanophotonic devices that often makes them di�cult to put

into practical use. Here, we describe a way to overcome this problem by combining

light localization (caused by fabrication randomness) with deep learning. We use a

simple chirped PhC waveguide (WG) in which light will exhibit di�erent pattern

depending on its frequency that will allow us to detect the frequency of the input

light by recognizing the associated pattern. This structure also takes advantage of

the random localization of light resulting from fabrication errors to increase the

resolution of the device. We reconstruct the spectrum by feeding our algorithm

with training images of the wavelength sensitive pattern formed by the scattering of

light in the structure on which we perform learning. Using this approach, we can

obtain a resolution even higher than the wavelength resolution of the fabricated

device, which is limited by the resolution of the fabrication technique. By using

deep learning, we show that we are not limited by the resolution of fabrication and

that we can even use it at our own advantage to increase the resolution of our system.

Chapter 1 brie�y introduces this work by describing the context and the objec-

tives of this research.

Chapter 2 explains the theoretical background of photonic crystals and the photonic

crystal structure that we are going to use for our design.

Chapter 3 explains the theoretical background regarding deep learning.

Chapter 4 describes the experimental procedure that has been made in order to

acquire data.

Chapter 5 focuses on the main part of this work: how can we predict the frequency

components of the input signal with deep learning.

Chatper 6 summarizes this work and shows the possible methods for improving the

performances of the system.
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Chapter 1

Introduction

1.1 Context
Optical communication was a huge breakthrough in communication technologies.

The use of optical �ber as a media to transmit modulated light through the �ber

presents undeniable advantages compare to other methods of communications as

using copper wires: Low power losses which allows longer distance communication

and high bandwith which allows the transmission of a bigger amount of data per

unit time. It is therefore natural that this method for communication would be

widespread in order to improve communication systems. Given the e�ciency of opti-

cal communication, its application in communication systems is increasing more and

more. For instance, applications using IoT (the connexion between physical objects)

is expected to increase signi�cantly and therefore the amount of data contained in

communication will increase as well. Consequently, data tra�c is signi�cantly in-

creasing by the year as it is shown in �gure 1.1. This development in communication

settles some new requirements for optical communication:

• Very-short distance optical communication technology to support large data

capacitance

• Being able to achieve mass-production of devices

• Enabling the fabrication of small-footprint devices

Figure (1.1): Evolution of optical data capacity. Original data from cisco: [1]
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This dynamic con�icts with some conventional optical devices such as spectrom-

eters as they have two major drawbacks: they are bulky and expensive because they

consist of a combination of mirrors, lenses and grating structures as shown in �gure

1.2. Furthermore, there is in such devices a trade-o� between size and resolution,

which means that to obtain higher resolution, an increase in the size of the device

is needed. In a conventional optical spectrometer, the input light is re�ected by a

mirror onto a grating structure that will re�ect light with a di�erent angle for each

wavelength component in order to separate them. They will then be focused by a

mirror onto a detector.

Figure (1.2): Schematic of a conventional optical spectrometer

The goal of reducing both size and cost of optical instruments doesn’t only apply

to devices such as transmitters, receivers, modulators, de-multiplexers, and splitters,

but also for test and measurement instruments, such as spectrometers, that are

essential for assuring good operation of the optical network. Consequently more

and more researches have been made towards the signi�cant reduce in size and cost

of optical devices as well as the integration on chip of optical devices.

1.2 Spectrometer applications
A Spectrometer takes light as input and reconstruct the light’s spectrum, in other

words it detects the frequencies and power associated to each frequency in the

optical signal. Spectrometers have a wide range of applications. One example is to

be found in optical communication. There exist techniques of data transmission that

allows the increase in data rate and to save physical space. One of these technique,

called WDM (Wavelength Division Multiplexing) involves sending di�erent data

through the same media by modulating the di�erent data on carriers having di�erent

frequencies. The data can be thus mixed into a single signal with the di�erent data

not interfering with one another because they are carried on di�erent well separated

frequencies. [38]

Another example is to be found in food industry where it is possible to use

spectrometry to determine food quality and insure customers health through di�erent

methods. One being, for example, to shine light through a food sample and check

on the output spectrum which wavelengths were absorbed by the food sample. [9]
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1.3 Previous Researches
Previous researches have been made towards the on chip integration of optical

spectrometers. What comes out of these researches is that silicon photonics is

considered a good candidate to reduce both size and cost of the device. [13] In

fact, nanofabrication techniques in silicon photonics are very well established and

mastered making it very cheap and enabling the possibility of mass-productivity.

Silicon also exhibits another advantage: It has low absorption in telecommunication

wavelengths, which reduces the lost [22]. For these reasons, Silicon photonics

appears as the ideal candidate for this application.

As a �rst example, Andreas C. Liapis et al. [31] conducted a research on the design

of a spectrometer based on optical nano-cavities , i.e a structure that is able to con�ne

light depending on its frequency. This paper proposes two di�erent structures. In

the �rst one, light is conducted into a certain number of resonators each tuned to

a di�erent wavelength. Wavelengths that cannot be con�ned in the structure will

exit to the output. By monitoring the output to know from which cavity light exits,

they are able to reconstruct the spectrum. These two structures are shown in �gure

1.3. The obtained resolution is 0.02nm which is very high, nevertheless the working

operation is in a 1.5nm wavelength range which is very narrow.

The second proposed structure has a unique photonic nano-cavity, the wave-

length separation from the signal is performed by tuning the temperature of the

cavity that will change its resonating wavelength. Since there is a relation between

the temperature and the resonance wavelength of the cavity (and thus to the wave-

length of the light exiting the cavity), it is possible to reconstruct the spectrum by

monitoring the output to see at which temperature we detect light at the output.

These two structures are limited by fabrication errors and thus require a very high

fabrication precision such that it is di�cult to achieve with current CMOS processes.
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Figure (1.3): Operating principle of a PhC cavity spectrometer using (a) an array of
sequentially tuned cavities or (b) a single dynamically tunable cavity. Permission for the
use of this �gure was given by the author: Gao B. Siddiqui M. R. Shi Z. Liapis A. C. and
R.WBoyd. “On-chip spectroscopy with thermally tuned high-Q photonic crystal cavities”.
In: Appl. Phys.Lett. 108, 12–16 (2006).

To solve this problem, B. Redding et al.[15] used a random structure. After

scattering randomly in the structure shown in �gure 1.4, the input light reaches a

detector array at the output. Spectrum reconstruction is enabled by recognizing

the pattern of the light scattering at the detectors. This proposition overcomes the

fabrication error problem since this structure is itself based fully on randomness. On

the other hand, because of this feature it is di�cult to obtain wavelength information

intuitively. Using this method, they achieved a 0.75nm resolution within a 25nm

wavelength range. If the wavelength range is higher than in the previous presented

design, they didnt achieve a resolution nearly as good as they seems to be limited by

a trade-o� between resolution and wavelength range of operation.
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Figure (1.4): A chip-based spectrometer based on multiple sca�ering in a disor-
dered photonic structure. a, SEM image of the fabricated spectrometer. The dispersive
element is a semicircular array of randomly positioned air holes. The light di�uses through
the random array via multiple scattering and eventually reaches the 25 defect waveguides
around the circumference of the semicircle. These tapered waveguides will couple the signals
to the detectors (not integrated). The distribution of intensities over the detectors is used
to identify the input spectrum.b, Numerical simulation of �eld pattern. c, Experimental
near-infrared optical image of the random spectrometer with a probe signal at _ = 1, 500=<.
The white boxes, labelled ‘Detection channels’, mark the positions of detectors at the end of
25 defect waveguides. To avoid the complexity of integrating the detectors, we estimated the
intensity coupled into each output waveguide from the integrated intensity of scattered light
within each white box. The out-of-plane scattering is caused by the semicircular groove,
shown in a, that terminates the waveguides at the location of the detectors. Permission
to use this �gure was given by the author: R. Sarma B. Redding S. F. Liew and H. Cao.
“Compact spectrometer based on a disordered photonic chip”. In: Nature Photonics, 7(9),
746–751 (2013).

1.4 Motivation and objective of this study
Nevertheless, these researches have two major common points: First, they managed

to propose a design of a cost e�ective optical spectrometer with low footprint.

Second, they rely on photonic crystal structures which thus seems to be a promising

candidate in order to achieve our goal.

Following the requirements and general trend of designing always smaller

and cost e�ective optical devices with which we have to be able to achieve mass-

productivity ,we therefore focused our research on using photonic crystal structures

while proposing a structure that would solve both issue the previously introduced re-

searches have experienced by using the strong points of both structures. We will use

both order and disorder properties of a photonic crystal structure to enable compact

but high resolution spectrometer with a wide wavelength range of operation.
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This research will essentially focus on the spectrum reconstruction using deep

learning. The objectives are:

• Combining deep learning with a small footprint photonic crystal waveguide

to propose a compact spectrometer design

• Being able to detect single wavelength signal

• Being able to reconstruct multiple wavelength component signal

• Achieve high resolution on a wide wavelength range

The next chapter will thus concentrate on what is a photonic crystal structure

and the structure we propose for our design.
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Chapter 2

Photonic Crystals

In the last few decades, engineers in the optical �eld have been researching on

ways to design structures in order to modify their optical properties. Some of

these structures are already well implemented and widely used, for instance optical

�bers, which simply guide lights with very low losses, were a breakthrough in the

telecommunication industry. Complete control over light propagation in a material

has been investigated in order to �nd structures that can allow us to achieve this task.

To �nd the answer, we can perform an analogy with electronics. We managed to

achieve control over electronic properties using crystals. A crystal is a material which

shows periodicity in the arrangements of its atoms, causing electrons propagating in

the crystal to see a periodic potential. This periodicity will cause the material to have

gaps in the energy bands, which means that electrons with certain energy cannot

propagate in the structure. It is then possible to control the electronic properties of

the material by doping the material, which means we will insert foreign atoms in

the structure and break the symmetry of the structure.

The idea behind photonic crystal is to mimic this concept and design optical materials

such that when light is propagating, it sees a periodicity in the structure that a�ects

its propagation.[53] This periodicity will be achieved by alternating materials in the

structure to have a periodic variation of permittivity.

2.1 Concepts
Propagation of light is governed by Maxwell’s equations given by:

∇ · B = 0
®∇ × E + mB

mC
= 0

∇ · D = d ®∇ ×H − mD
mC

= I
(2.1)

with D(r) = n0nA (r)E(r) and B(r) = `0`A (r)H(r) ,E being the electric �eld, D
the displacement �eld, H the magnetic �eld, B the magnetic induction �eld, d the

density of charges in the material and � the current in the material. `A is the relative

permeability , `0 is the permeability in vacuum, n0 is the permittivity in vacuum. nA (r)
is the relative permittivity and depends on the position r in the material because it is

not constant since in a photonic crystal, there is a periodic variation of permittivity.

It can be shown that if we consider the following assumptions:



8 Chapter 2. Photonic Crystals

• The �elds strengths are small enough to be in linear regime (no non linear

e�ects)

• The material is macroscopic and isotropic

• We ignore material dispersion

• We consider the material as being transparent (i.e, n (A ) is purely real and

positive)

• no current in the material , � = 0

• zero density of charges , d = 0

It can be shown that with 2.1 we can write:

®∇ × ( 1

n (r) ∇ ×H(r)) = (
l

2
)2H(r) with 2 =

1

√
n0`0

(2.2)

This equation is the main equation that describe, using it together with 2.1, the

propagation of H(r) for a given structure n (r). If we de�ne the operator Θ̂ as

Θ̂H(r) B ®∇ × ( 1

n (r)
®∇ ×H(r)) (2.3)

We can rewrite 2.2 as

Θ̂H(r) = (l
2
)2H(r) (2.4)

Equation 2.4 shows that, since the application of Θ̂ gives H(r) multiplied by a

constant, Θ̂ is an eigen operator that has (l
2
)2 as an eigenvalue and H(r) as an

eigenvector and solving this equation is therefore the same as solving an eigenvalue

problem. We will call, for a given nA (r) all the H(r) that satis�es this equation, a

mode of the system. We can classify the di�erent mode of a system by the particular

values of their wave vector k. This wave will be able to propagate in the structure

given by nA (r) at frequencyl . But, for a given H(r) and nA (r) , it is possible that there

exist values of l for which there are no solutions. In that case, an electromagnetic

wave having frequencyl cannot propagate in the structure and the material exhibits

a photonic bandgap. Analogously to electronic semiconductor physics where a

semiconductor crystal can exhibit an energy bandgap, electrons having an energy in

this bandgap not being able to propagate in the structure, photonic bandgap forbids

electromagnetic waves having a frequency falling in the bandgap to propagate in the

structure.[27] Since the relative permittivity nA is an intrinsic property of the material,

we can conclude that it is possible to control the optical properties of materials by

controlling nA (r), in other words the design of the structure. In that way it is possible

to control the bandgap of the material and to control where in the structure, the

light is allowed to propagate and other properties such as its propagation velocity.

The simplest photonic crystal (PhC) is a multilayer �lm which is shown in �gure

2.1. [19] It has a periodic variation of its permittivity in only one direction. It

corresponds to an alternation of layers of two di�erent materials.
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Figure (2.1): 1-Dimensional [John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn,
Robert D. Meade, Photonic Crystals: "Molding the Flow of Light". Princeton University
Press,p45, 2007.]

If the wavelength of the incident light is of the same order of magnitude as the

periodicity of the crystal, the re�ected and transmitted waves at each interface will

interfere, leading to a band structure. Indeed for frequencies inside the bandgap, the

overall interference will result in no transmission and corresponds to frequencies

l that don’t respect equation 2.2. Assuming the 1D Photonic crystal being homo-

geneous in directions G and ~ and having a periodic variation of permittivity in

direction I as indicated in �gure 2.1, since the structure is periodic in I, we can use

the Bloch theorem stating that we can rewrite H(r) as the product of a plane wave

and a periodic envelope u having the same translational symmetry as the structure:

u(I) = u(I + ') with ' being an integer multiple of 0, the spatial period.

H(r) = 48kxy·d48:IIu(I) (2.5)

kG~ represents the wave vector in the homogeneous plane (G~ plane) and can have

any value unlike kI that is in the direction of permittivity variation. Since the

structure is periodic of primitive lattice vector 0Î, we can de�ne the reciprocal

primitive lattive vector as being
2c
0
Î in the reciprocal space (space of wave vectors)

and completely de�ne the relation between l and :I in the interval −c
0
< :I ≤ c

0

called the Brillouin zone.
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Figure (2.2): The photonic band structures with increasing values of permittivity di�erence
between the two materials [John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn,
Robert D. Meade, Photonic Crystals: "Molding the Flow of Light". Princeton University
Press,p45, 2007.]

We can see in �gure 2.2 that the band diagram (i.e diagram showing the relation

between frequency and wave vector) with no variation of permittivity given by the

left most plot shows the linear relation betweenF and : given byF (:) = 2:√
n
. When

a variation of permittivity is inserted in the structure, a bandgap starts appearing

and increasing the di�erence of permittivity between the two materials composing

the photonic crystal will increase the size of the bandgap .

2.1.1 Photonic Crystal waveguide
2 dimensional PhC structures have periodic variations of permittivity in two direc-

tions and are homogeneous in one direction. The propagation of light will thus be

modi�ed within a plane. In this case the structure will exhibit a bandgap in the 2

dimensions within this plane.[42, 46] The permittivity of the structure will exhibit

periodicity such that n (r) = n (r + R) with R being a linear combination of 0Ĝ and

0~̂ considering a PhC heterogeneous in x and y directions. A 2D PhC will typically

consist of a lattice of dielectric columns as shown in the left �gure of 2.3. The lattice

topology that is most commonly rectangular as in the right �gure of 2.3 or triangular

with one row of holes out of two shifted by half a period of the lattice as in the left

�gure of 2.3, but more complex lattices such as hexagonal lattices also exist.[56] The

important parameters to consider are the lattice topology, the lattice period 0 and

the radius of the holes A .
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Figure (2.3): 2D PhC structure [Shanhui Fan Steven G. Johnson Pierre R. Villeneuve and
J.D Joannopoulos. “Linear waveguides in photonic-crystals slabs”. In: Physical Review B 62
(2000).]

It is possible to modify the optical properties of the structure by including defects

in the crystal. A defect consists in breaking the symmetry of the structure, this can

be done for example by omitting some holes in the structure or changing the radius

of the holes. By introducing these kind of defect along a line in a 2D PhC structure

allow us to fabricate a photonic crystal waveguide. This type of structure is used to

guide light from one point to another while being as con�ned as possible in the path

on which light is guided. Di�erent types of PhC waveguides are shown in �gure

2.4. Omitting one or several lines of holes in the structure will change the bandgap

structure and introduce possible modes within the bandgap, typically a guided band
can be introduced inside the bandgap. These modes whose frequencies are in the

bandgap will be con�ned in the defect line as it cannot propagate in the periodic

parts of the structure. Indeed, since it is originally a mode that cannot propagate in

the structure, it will be con�ned in the only part in which it can propagate which

are the locations where symmetry has been broken.[29] These structure are used to

guide light along this line of defect with low loss as the light can only propagate

along the waveguide.

Figure (2.4): Examples of PhC waveguides: (a) waveguide consisting of a row of missing
holes, (b) waveguide consisting of a row of holes with smaller diameter, (c) coupled-cavity
waveguide and (d) 3 holes wide waveguide [C. Jamois et al. “Silicon based two dimen-
sional photonic crystal waveguides”. In: Photonics and Nanostructures, Fundamentals and
Applications 1 (2003).]
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PhC waveguides have the interesting property of only allowing light up to a

certain wavelength propagate. This maximal wavelength value for which light can

propagate in the waveguide, the mode gap wavelength, is sensitive to the width

of the waveguide. Light having a wavelength above this mode gap wavelength

cannot propagate in the waveguide. Waveguides with di�erent widths will therefore

exhibit di�erent mode gap wavelength values. This relation is illustrated in �gure

2.5 where we can see that, starting from a width, and reducing it to values 0.80,

and 0.65, , the guided band is shifted upwards increasing the photonic bandgap

(PBG) therefore reducing the range of wavelengths being able to propagate in the

structure by reducing the value of the mode gap wavelength [28].

Figure (2.5): Relation between width an Bandgap

Figure 2.6 shows the transmission of a photonic crystal waveguide for di�er-

ent values of width, we can see that the transmission drops for lower values of

wavelength when the width is smaller.
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Figure (2.6): MEEP simulation showing the transmission in PhC waveguide for di�erent
width values

2.1.2 Anderson Localization
Photonic crystal structures are usually fabricated with lithography fabrication pro-

cesses that have inherent resolution limits.[14] For example, the resolution of pho-

tolitography is limited by the wavelength of the shined light. These fabrication

errors will introduce uncertainty and therefore induce randomness in the structure.

In photonic crystal waveguides, we will thus have an uncertainty on the position of

the holes, the radius of the holes and the width of the waveguide. In an ideal PhC

waveguide, light propagation is described by bloch modes given by equation 2.5. In

such ideal structures, the group velocity, given by:

E6 =
3l

3:
(2.6)

and therefore corresponding to the derivative of the dispersion relation l (:) illus-

trated by the curve of the band diagram, vanishes at the band edge if its wavelength

is higher than the mode gap wavelength as it cannot propagate in the structure [36].

In the case of a non-ideal PhC waveguide, it has been shown experimentally that

the group velocity E6 is very small when the wavelength is at the mode gap of the

PhCW and can localize in the structure. Indeed, the mode gap wavelength will not

be perfectly constant along the waveguide because the width itself is not perfectly

constant due to random variations induced by the fabrication errors. Light having

a wavelength above the mode gap wavelength (therefore a wavelength below the

cut-o� wavelength, making it possible to propagate in the structure) can be trapped

in regions in the waveguide where the surrounding regions exhibit a mode gap

wavelength higher than the ideal mode gap wavelength as it is indicated in �gure

2.7.
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Figure (2.7): Illustration of the variation of the cut-o� frequency (corresponding to the
mode gap wavelength but expressed in terms of frequency) induced by fabrication errors
with respect to the position along the waveguide. To be able to propagate, light should have
it’s frequency above the cut-o� frequency (which corresponds to its wavelength being below
the mode gap wavelength). The black line represents the value of the cut-o� frequency in
the ideal case. The red arrows shows places in the waveguide where light can localize [55]

This is a phenomenon called anderson localization.[26] The interference of the

scattered light in the structure can lead to the formation of modes, called localized
modes, that appear at random positions in the structure . Indeed, slow light is

susceptible to backscattering which blocks the propagation of light if the wavelength

is above the mode gap wavelength. The introduction of random variations in the

structure creates localized states at the edge of the mode gap, creating resonant

cavities in which light localizes along the waveguide. [24, 39] Figure 2.8 shows the

localized states in the waveguide and �gure 2.9 shows the possible randomness that

can modify the transmission spectrum of the photonic crystal waveguide.

Figure (2.8): example of localized state in a disordered photonic crystal structure. Light
starts to localize in random positions in the waveguide when the wavelength is close to the
mode gap [J. Jagerska V. Zabelin N. Le Thomas H. Zhang and R. Houdre. “Light transport
regimes in slow light photonic crystal waveguides”. In: Physical Review B 80 (2009).]
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Figure (2.9): Left: Random variations induced by fabrication errors, the holes can have an
error on their radius or their position. Right: localized state above mode gap [Tomohiro
Tetsumoto Yuta Ooka Nurul Ashikin Binti Daud and Takasumi Tanabe. “Compact resonant
electro-optic modulator using randomness of a photonic crystal waveguide”. In: Optical
Society of America (2016)]

2.2 Proposed Structure
Taking advantage of the property of photonic crystal waveguides having a mode gap

wavelength depending on the width of the structure, we propose to use a chirped

photonic crystal waveguide [35] which is a photonic crystal waveguide whose

width is not constant and decreases along the waveguide. Due to the limitation in

fabrication accuracy, the width does not decrease constantly but in steps, the chirped

structure is therefore divided into sections of constant width, each section having a

di�erent width as illustrated in �gure 2.10.

Figure (2.10): Illustration of a Chirped Photonic crystal waveguide

Since each section has a di�erent width (the width decreasing from one section to

another) the mode gap wavelength along the structure will decrease. This will cause

light with di�erent wavelengths to propagate in the waveguide, in fact light will
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propagate through the waveguide until it reaches the point where it’s wavelength

becomes higher than the mode gap wavelength of the section it is propagating

in. When the input light comes into a section in which it cannot propagates, light

will have to scatter backwards and upwards since it cannot propagate further nor

scatter to the sides because it cannot propagate in the periodic structure (the 2D

photonic crystal structure being designed to have its bandgap around the frequency

of operation and therefore con�ning light in the waveguide). Ideally, this means that

light with di�erent frequency components will exhibit di�erent patterns because

each frequency component will be able to propagate in the waveguide up to di�erent

points therefore creating di�erent patterns for di�erent input light sources. By

recognizing these di�erent patterns, we would be able to tell which frequency

components are present.

Nevertheless, the resolution in fabrication of the chirped structure will limit

the resolution of our system because the decrease in width of the waveguide is

not constant and is done in steps which divides the structure into section having

the same mode gap. This means that rather than the mode gap variation being

continuous, it is discrete. The di�erence in mode gap wavelength between two

neighbouring sections will be the wavelength resolution of the structure, two input

light having a wavelength di�ering by less than this wavelength resolution might

therefore propagate in the waveguide up to the same point in which case we would

not be able to tell the di�erence between these two wavelengths. The resolution

of the whole system would be de�ne by the wavelength resolution of the photonic

structure, at least theoretically and not taking into account the fabrication errors.

Indeed, as explained in the previous section, fabrication errors will cause light

to randomly localize in the structure and these random localization are strongly

frequency dependent. Furthermore, light will exhibit Anderson localization when

its wavelength is closer to the mode gap. We therefore hope to take advantage of

fabrication errors to go beyond the wavelength resolution imposed by the structure

with the correct pattern recognition techniques. The pattern recognition process

will therefore be based on two phenomena, a �rst that is predictable (we can have

information on the wavelength of the input light by looking up to which section

in the waveguides it propagates) and one that is random (detecting wavelength

sensitive random localizations of light in the structure) that will help improving

the resolution beyond the resolution imposed by the structure. Since we also rely

on random phenomena, we choose to use deep learning for pattern recognition.

The algorithm should be able to recognize the pattern taking the two phenomena

explained above as feature of interest.

Following these re�exions, we decide to propose the following system: Light

will input a chirped photonic crystal waveguide that will exhibit, looking from the

top of the waveguide, di�erent patterns depending on the frequency component

present in the light signal. A camera at the top of the slab will take a picture and

feed it to a model that will predict the wavelengths of the input light. This model

will have been obtain by using deep learning, which means we will train our model
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with training images to make it able to perform pattern recognition. Figure 2.11

shows a schematics of the proposed design of the system.

Figure (2.11): Illustration of the proposed spectrometer system
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Chapter 3

Deep Learning

3.1 Basics
The application of machine learning to solve various cases of problems didn’t stop

increasing since its introduction in the 1950’s. It refers to a mathematical and

statistical approach of designing algorithms that allows the computer to increase its

performances towards solving a problem through a self-learning process based on a

provided dataset. Arti�cial neural networks aim to simulate the learning process in

biological organisms. In such networks, neurons are connected together in order to

perform computation. In arti�cial neural networks, each neuron is considered has a

computation unit, which take several inputs and gives one output. [51] The = inputs

G1, ..., G= will be linearly combined by a set of weights F1, ...,F= speci�c to each

neuron of the network added to a bias 1. This combination of the inputs will then

be processed by a function I called activation function. A schematic representation

of an arti�cial neuron is shown in �gure 3.1. Each neuron will therefore act as a

function that can be written has:

5 (G1, ...G=) = 6(
=∑
8=1

F8G8) + 1 (3.1)

Figure (3.1): Working principle of an arti�cial neuron [Kenji Suzuki,"Arti�cial Neural
Networks - Methodological Advances And Biomedical Applications." InTech,p1, 2011]
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By combining these individual neurons together, we obtain a network that is able

to take several input and perform complex computation.[40] This results in a simple

neural network as shown in �gure 3.2. It is important to note that each individual

neuron in the network will have its own set of parameters: inputs and weights.

Figure (3.2): Example of simple arti�cial neural network. [Kenji Suzuki,"Arti�cial Neural
Networks - Methodological Advances And Biomedical Applications." InTech,p1, 2011]

An arti�cial neural network is composed by layers that are a set of neurons

that are taking as input the output of the previous layer. The �rst layer is called

the input layer and the output is called the output layer. All layers in between are

called hidden layers because the �ow of information in these layers are completely

hidden and it is not possible to know any intermediate state between input and

output. The way the individual neurons are connected to each other is called the

architecture of the neural network. The choice for the architecture will depend on

the application, di�erent architectures will be more or less e�cient towards di�erent

applications. For example, we will choose di�erent activation functions depending

on the applications, it will be di�erent if we want to predict a probability (for which

we need a function that outputs a value between 0 et 1), if we need to output a

real value without speci�c boundaries or if we need to output binary values.[12]

The number of output nodes of a layer is also dependent to the activation function

which in turn depends on the application. It is important to choose the appropriate

activation function for the targeted application. Figure 3.3 shown in [12] shows the

most common activation functions.
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Figure (3.3): Common activation functions [Charu C. Aggarwal, "Neural Networks and
Deep Learning". Springer,p13, 2011.]

3.2 Fully Connected Network and learning process
Fully connected Network (FCN) are multilayer neural network, they contain more

than one computational layer.[21] These architecture are called feed-forward net-

works because the �ow of computation only follows one direction from the input to

the output. The term "fully connected" refers to the fact that each nodes from the

previous unit are connected to all nodes of the next unit as it is the case in �gure 3.2.

Therefore, the architecture is almost fully de�ned once the number of layer and the

number of nodes are determined.

First let’s introduce the learning process with a larger view. We will focus in this

work on a type of learning process called supervised learning, in which learning is

performed through feeding the algorithm example data on which the model will try to

�t in order to perform predictions on unknown data that is supposedly representative

of the fed data. This method contrasts with unsupervised learning in which learning

is performed with unlabelled data (unknown data).[33] Here, the input will be what

can be referred to as training data. It will be data that is representative of data that

we want to be able to predict. As a simple example (example that we will use across

this chapter), if we want to build a program that is able to recognize images of cats,

we will give as input our training data that will be images containing cats and images

that don’t. To each input G will be associated a label ~ that correspond to the output

we want our program to associate with the input. In our example, we can see that

the problem has a binary answer, either the image contains a cat or it doesn’t. We

can therefore associate a binary value to the labels: either 0 (if the image does not

contain a cat) or 1 (if the image contains a cat).

After this learning process it is important to test the algorithm on a test set that

must be di�erent from the training set to check if the algorithm learned correctly

and reaches satisfying accuracy. If it does, it means that the obtained model is suited

for the targeted application.

Now that we saw the general view on the learning process, we can concentrate

into how this process works in more details. To understand the mathematics behind
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FCNs, we have �rst to take a look at some notations, including matrix notations

that will allow us to write the equations in a more compact matricial form. Let’s

consider a FCN with : layers . The input layer is considered as layer 0 because no

computation is performed, it just transmits data. The di�erent notations are given

as follows:

• We will write G8 the 8Cℎ input node.

• Ḡ is a vector containing the input nodes Ḡ8 .

• ℎ?8 is the 8Cℎ node of the ?Cℎ hidden layer.

•
¯ℎ? is the vector containing the hidden layer nodes ℎ?8 in the ?Cℎ hidden layer.

• ,8 is the matrix containing the weight parameters connecting layers 8 − 1 and

8 .

• 1 is the added bias.

• Φ8 corresponds to the activation function of he 8Cℎ hidden layer.

• We will write ~ (8) the 8Cℎ output node.

• ~̄ is a vector containing the output nodes ~̄ (8) also called labels.

The set of equations showing the �ow of computation in such networks and

giving the relation between the input and the output can be given as follows:

¯ℎ1 = Φ1(, )
1
Ḡ) Input to Hidden layer

¯ℎ?+1 = Φ? (, )
?+1

¯ℎ?) ∀? ∈ {1 . . . : − 1}Hidden to Hidden Layer

~̄ = Φ:−1(, )
:+1

¯ℎ:) Hidden to Output Layer

(3.2)

Having these equations,[48] we can now see how we can manage to obtain a learning

process. Here we will discuss brie�y on this method. This process is based on a

technique called gradient descent which is an optimisation problem that is given as

follows: we want to minimize a cost function � (,, ¯1) depending on the parameters

, representing a matrix containing all the weights of the system and
¯1 a vector

containing all the biases of the system. The cost function is given by

� (,, ¯1) = 1

<

<∑
8=1

!(~̂ (8), ~ (8)) (3.3)

where ~̂ (8) is the 8Cℎ output of the network (the prediction given by the network) and

~ (8) is the real value that we want to predict (in an ideal case, ~̂ (8) = ~ (8)). !(~̂ (8), ~ (8))
is called the loss function and computes the error for a single training example while

the cost function is the average of the loss functions of the entire training set. � (F,1)
has the property of being a convex function and therefore possessing a minimum.
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The learning process is the fact that we are going to perform several iterations of

the computations while updating the parametersF and 1 in between each iterations

in the following way:

F B F − U m� (F,1)
F

1 B 1 − U m� (F,1)
1

(3.4)

The algorithm will update the parameters in order to minimize the cost function. F

and 1 are called learning parameters because they are the parameters on which the

learning process is performed.[52, 43] U is the learning rate of the system and will

have an in�uence on the sizes of the steps we use to reach to the minimum of the

cost function. Setting it too low will increase the time we take to reach the minimum

but setting it too high might give a situation where the steps are so big that we end

up passing over the minimum and ending up to far from it.

Typical problems may arise during the learning process. One of them being what

is called over-�tting, which is the fact that, even though we want our model to �t on

the training set, we don’t want it to �t too much. Over-�tting arises when the model

doesn’t generalize the problem enough. Taking our example problem of recognizing

cats, if we only put images of white cats into the training set, the algorithm might

over-�t and not recognize cats having other colors. The reason is that, during the

learning process, the program will try to detect features that characterizes the input.

Here the program might focus on the feature "white", but this is not a feature that

represents a cat, in contrast to other elements like the shape of the body or the ears.

This is why the training set must be as general as possible, so that the program

concentrates on features that really represents the input.

3.3 Convolutional Neural Network
A convolutional neural network (CNN) is a type of neural network that strongly

di�ers from FCNs. While FCN relies on the way nodes are arranged and connected

together, CNNs rely essentially on �ltering. The learning parameters of CNNs are

the values of the �lter. They are randomly initialized at the start of the process and

will then be updated at each iteration of the algorithm in order to minimize the cost

function as in FCNs. CNNs are usually used for applications were the input is an

image, therefore a 3 dimensional input having height, width and depth. The last

term refers to the number of channels. If we represent our input image as a matrix,

there would be 3 channels corresponding to the RGB (amount of red, green and

blue) values. The computation in CNN architectures are composed by convolutional

layers that include 3 operations in order: convolution, pooling and Relu.

First, convolution is an operation where the input will be processed by a �lter

(also often called kernel). It is important to note here that we will refer to the terms
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"convolution" as matricial convolution which is de�ned a little bit di�erently than the

conventional convolution operation. The matricial convolution operation will place

the �lter at every possible position in the image and perform a dot product. The

results from all these dot products are placed in a matrix. The position of the �lter

on the input image determines the position of the obtained value in the obtained

matrix. It is important to note that the output matrix will have di�erent dimensions.

In fact, if the �lter has dimension ℎ ×F × 3 and the image has dimensions of height

and width ℎ 5 ×F 5 ×3 , then the obtained matrix will have dimensions corresponding

to ℎ − ℎ 5 + 1 × F − F 5 + 1. We can see here that the number of channels of the

�lter is the same as the number of channels of the image, which is a requirement to

satisfy the applicability of matrix convolution. An example of matricial convolution

is given in �gure 3.4. During the convolution step, the input can be processed by

more than one �lters. The results of each �ltering will each be a di�erent channel of

the ouput. In other words, if the input has dimensions< ×< ×3 and is processed by

n �lters of size 5 × 5 × 3 , the output will have dimensions< − 5 + 1 ×< − 5 + 1 × =
as illustrated in the example given by �gure 3.5.

The next operation in a convolutional layer is pooling. The idea behind this

concept is to sample the data by taking a window of a certain size % ×% , and produce

a matrix with the same depth but for each square of size % ×% , we select one element

according to the pooling method. The most commonly used pooling method are

max-pooling where we only select the maximum in each square and average-pooling
in which we perform the average of each square. As a result of this sampling, the

data will have its dimensions reduced by a factor % .

The last step of a convolutional layer is to apply an activation function which

will be applied element-wise in the matrix. The most commonly used activation

function is ReLu that is shown in �gure 3.3 and whose equation is given by:

6(G) =<0G (G, 0) (3.5)
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Figure (3.4): Example of a convolution between a 7×7×1 input and a 3×3×1 �lter [Charu
C. Aggarwal, "Neural Networks and Deep Learning". Springer,p13, 2011.]

Figure (3.5): Example of a convolution step with 5 �lters [Charu C. Aggarwal, "Neural
Networks and Deep Learning". Springer,p13, 2011.]

In order to build a CNN, we just have to stack convolutional layers one behind

another in order to form a network that will have a general form: Convolution1→
Pooling1→ ReLu1→Convolution2→ Pooling2→ ReLu2→ . . . . These architecture

are then combined with a FCN that will output the prediction. Since the data in

FCNs are vectors and not matrices as in CNNs, it is important to perform a �attening

operation after the last convolutionnal layer. This �attening operation just converts

a matrix = ×< × ? in a vector containing =<? elements ordered following the rows

of the matrix, then the columns and �nally the depth, as shown in �gure 3.6
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Figure (3.6): A CNN with a convolutional layer, a max-pooling layer, a �attening layer
and a fully connected layer with one neuron [Sandro Sanski,"Introduction to Deep Learning:
From Logical Calculus to Arti�cial Intellingence." Springer,p126, 2011]

3.4 Classi�cation

3.4.1 Classi�cation problem
Several categories of supervised learning problem exists, the most common being

linear regression, where the goal is to predict a value and classi�cation where the

goal is to put the input into a category. In our case, we will focus on the latter as it

will be the one we will use in our application. Taking our example of recognizing

images of cats, it is a simple example of classi�cation problem. Indeed the goal is

to classify the data into two di�erent categories: "cat" or "not a cat". Here we will

also consider our problem as a classi�cation problem As it will be seen in chapter 4.

Fixing a wavelength resolution for our model and a wavelength range, we will have

a �nite number of classes, the goal will then be to classify the input image into one

of these classes to determine the wavelength of the input signal. For example, if we

want to have 1=< wavelength resolution on a 20=< wavelength range, we will have

20 di�erent classes corresponding to the 20 wavelength we can detect and we will

associate every input with these classes.

Several activation functions exist to be able to design a classi�er, we will focus

here on two of those. The �rst one is the softmax function.

Z (z) B 4I 9∑#
==1

4I:
9 = 1 . . . # (3.6)

This function transforms a vector z with arbitrary real values into a vector with

values ranging from 0 to 1. This is the reason why the softmax is used in the �nal

layer of a FCN used for multiclass classi�cation (classi�cation with more than two

classes) to get the output which can be a probability for the input to belong to the

classes. The highest probability is then taken as the prediction. The probabilities

given by softmax are dependant probabilities (their sum equals to 1).
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The other activation function we will focus on is the sigmoid function shown in

�gure 3.7 and given by:

f (I) = 1

1 + 4−I (3.7)

that also gives an output between 0 and 1.

Figure (3.7): Graph of sigmoid function [Sandro Sanski,"Introduction to Deep Learning:
From Logical Calculus to Arti�cial Intellingence." Springer,p63, 2011]

3.4.2 Metrics to evaluate classi�cation
The evaluation of such models require to introduce four concepts: True Positive
(TP),True Negative (TP),False Positive (FP) and False Negative (FN).

A True Positive arises when the classi�er predicts X and it is truly an X (correct

prediction). A True Negative arises when the classi�ers predicts that the data is not

X and it is truly not (correct prediction). A False Positive arises when the classi�er

predicts that the data is X when it is not (bad prediction). A False Negative arises

when the classi�ers predicts that the data is not X when it is X (bad prediction).

With these concepts introduce, we can now de�ne the fundamental metrics to

evaluate classi�ers. The most fundamental one is the accuracy that is de�ned as the

ratio of good prediction out of all predictions:

�22DA02~ =
)% +)#

)% + �% +)# + �# (3.8)

High accuracy means better model. But, even though the concept of accuracy

seems trivial, care must be taken as it is a great measure taking the assumption that

we have a symmetric dataset where the number of false positive and false negative

are almost the same. The next metric is the precision, which is a measure of the rate

of False Positives. Increasing precision means reducing the number of "false alarms",

positive predictions turning out to be wrong, or in other words, the ratio of true

positives out of all the positive predictions.

%A428B8>= =
)%

)% + �% (3.9)

The third metric is called Recall and measures how a classi�er misses correct

positive predictions out of all the predictions that turn out to be positive. It is used
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in the case we are concerned about "missing" true positives.

'420;; =
)%

)% + �# (3.10)

Finally the last metric is called FScore and is a weighted average of precision and

recall.

�(2>A4 =
2'420;; .%A428B8>=

'420;; + %A428B8>= (3.11)

Depending on the application and the objectives; one or several of these metrics

can be used. [11]
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Chapter 4

Experiments

4.1 Designed Photonic Structure
We decided to design our spectrometer for an application in the infrared part of the

spectrum which corresponds to wavelengths in the range from 700 nm to 1 mm.

Two photonic chips were designed: Chip A that will be used for single wavelength

prediction and Chip B that will be used for the wavelength prediction of signals

containing one or two wavelength components.

4.2 Experimental Setup
A Tunable laser diode (SANTEC TSL-510) with a resolution of 5?< and a power

peak ≥ 13 dBm[2] was used to input the di�erent signals into the structure while

monitoring their wavelength and power . A power meter (Agilent 81634B, power

range: -110 dBm to +10 dBm [3]) was used at the output of the structure to monitor

the output power in order to maximize the transmission in the structure by matching

the position of the laser and the input of the structure. In order to take images, an

NIR (Near Infra-Red) camera (Goodrich SU320KTS-1.7RT/RS170) was placed at the

top of the structure. A light focusing module with a focusing diameter of 2.8` m, an

extinction ratio ≥ 20 dB, an input loss ≤ 0.9 dB was used. The optical �ber conneting

the laser to the input of the chip and the output to the power meter is a PMF �ber

(Polarization-Maintaining optical Fiber). The experimental setup is shown in �gure

4.1.
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Figure (4.1): Experimental setup: A) Input connected to the tunable laser diode. B) Output
connected to the power meter. C) Infrared camera. D) Chip containing the photonic crystal
structure.

The same setup was used for chip B. To be able to produce multiple frequency

component signals, a 50:50 splitter was used to mix the single frequency signal and

produce an output signal which is the superposition of the two input signals.

4.3 Experimental data
4000 images were taken using chip A. The pictures were taken by doing a sweep

through the wavelengths between 1565 nm and 1586.8 nm with a 0.1 nm step, which

corresponds 200 di�erent frequencies. This sweep was realised at 20 di�erent power

levels (from -10 dBm to 9 dBm) which results in a total of 20 × 200 = 4000 images. It

is possible to approximate the values of the mode gap of the di�erent sections by

doing a sweep across the di�erent wavelengths and checking the wavelength for

which we observe Anderson localization because, as it was explain in Chapter 2,

Anderson localization occurs when the input wavelength is close to the mode gap.

Figure 4.2 shows an example of experimental data taken for an input wavelengths of

1573.8 nm 1574 nm.
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Figure (4.2): Images of signals at wavelength 1573.8=< and 1574=<. They propagate
until the same section in the waveguide which shows that there di�erence in wavelength
is smaller than the wavelength resolution of the structure but the signal at wavelength
1574=< experiences Anderson localization because its wavelength is very close to the mode
gap

Figure 4.3 show the approximate mode gap wavelengths for each sections are

respectively given by 1566.9=<,1568.9=< 1570.3 nm, 1571.9 nm, 1574.0 nm, 1575.8

nm, 1577.5 nm, 1578.5 nm, 1580.3 nm and 1581.2 nm.
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Figure (4.3): Di�erent signals at localization wavelengths (wavelength near mode gaps)
for chip A

Regarding chip B, 28000 images of single frequency signals were taken by doing

a sweep between 1568=< and 1581.99 nm with 0.01 nm step repeated on 20 di�erent

power levels from −9 dBm to 10 dBm. 1680 Images of multiple frequency component

signals were taken by �xing the �rst frequency component to a power of −7 dBm

and respectively wavelengths equal to 1571.88 nm, 1573.93 nm, 1575.33 nm and

1579.17 nm. The second frequency component is swept from 1568 nm to 1581.9

nm with a 0.1 nm step. The di�erent approximate values for the mode gap of

each section was found through the same method as for chip A and were found

to be respectively equal to 1568.17 nm,1570.22 nm,1571.74 nm,1573.20 nm, 1575.16

nm, 1576.64 nm,1578.32 nm,1579.67 nm,1580.42 nm and 1581.28 nm. Signals at the

di�erent mode gap wavelengths are shown in �gure 4.4.
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Figure (4.4): Di�erent signals at localization wavelengths (wavelength near mode gaps)
for chip B
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Chapter 5

Wavelength And Power Detection:
Methods, Results and Discussion

This chapter will talk about the methods used to perform wavelength prediction

and power prediction given images of light scattering in our designed chirped PhC

waveguide that were shown in the previous chapter. The �nal goal of this project

is to perform spectrum reconstruction (i.e being able to predict all the wavelength

component in a signal and their associated power), in order to progress towards that

goal, we will �rst focus on a simpler version of this problem: Performing wavelength

prediction for monochromatic light (composed of only one wavelength component).

We will then see how we can perform power detection on monochromatic light

before tackling the prediction of multiple wavelength component signal.

As it was explain in Chapter 4, we will base our wavelength prediction system

on supervised learning, which means we will train our algorithm using training data

represented by the collected data shown in the previous chapter. There is mainly

two methods of tackling a problem using supervised learning: Classi�cation or

Regression. The main di�erence between both methods is how we are going to treat

the data. In classi�cation, the data has discrete values, we have a �nite number

of classes in which we will categorize the data. In regression, there are no class

and the algorithm will assign to the input a continuous value. Since here we are

working with a structure having discrete properties (due to the resolution limit of

fabrication) and with data having discrete values (we work on a certain range of

wavelengths with a step that de�nes the number of wavelengths we are going to

work on),our data appears as discrete values data and we will therefore treat this

problem as a classi�cation problem. This work as been done using the "keras" library

[4] in python that o�er to design deep learning architectures in an easy and intuitive

way.
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5.1 Single wavelength detection

5.1.1 Pre-processing
Image cutting

Before starting to feed the data to the network for learning, it is important to pre-

process the data to optimize the learning process. The �rst step is to cut the image

as in �gure 5.1 and 5.2 to isolate the part that is important, in our case, the impor-

tant information is the position at which light stop propagating in the waveguide.

Everything that is located outside the waveguide is thus useless information for the

learning process. We therefore de�ne the region of interest as being 7 pixels around

the waveguide.

Figure (5.1): Isolation of the region of interest for the image pattern of a −23�< power
and 1575=< wavelength input light

Figure (5.2): Image obtained after cutting the input image around the waveguide, only
keeping the region of interest

Using only the region of interest for learning will allow the algorithm to learn

faster since it directly focuses on the important features and also because the size

of the data is signi�cantly smaller (we go from a 256 × 320 image size to a 7 × 320

image size ).

Removing background noise

Another step that will help optimizing the learning is to remove the noise from

the background of the image. Indeed, we are not interested in the background but

only on the pattern of the light in the waveguide. Since the pattern of the light in

the waveguide is signi�cantly brighter than the background, we will remove the

background just by applying a �lter that will only allow certain level of brightness in
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the image. By analyzing the value of the pixels in the image, we see that the pixels

corresponding to the light pattern all have a value above 0.05 and the pixels from

the background have a value way lower. We will thus apply a �lter that will apply

for each pixel value E of the image the following:

E =

{
E, if E ≥ 0.05

0, otherwise

(5.1)

The result after removing the background is shown in �gure 5.3.

Figure (5.3): Result after removing background

This will be the data with which we will create our dataset.

5.1.2 Creating the dataset
After pre-processing, the data is organized into datasets using .h5 �les, which are

�les in the HDF5 format.[5] These �les are binary data format �les in which it is able

to store big amounts of data and to manipulate it easily. It is possible to establish

hierarchy and to organize data that allows us to regroup di�erent datasets and to

organize them all in a single �le that is easily accessible in widely used programming

languages like python.

The collected data is separated randomly into a training set (on which we will

train our algorithm) and a test set (on which we will evaluate the performance of the

algorithm) following a common rule of thumb regarding the proportions when we

split our dataset: around 70% of the data will be used for training and 30% for testing

[32]. We will respect this rule by taking a 75% and 25% ratio. In each dataset, the

data is classi�ed in an array with its corresponding value of wavelength and power

as shown in �gure 5.4.
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Figure (5.4): Organization of the dataset

Architecture and choice of parameters

We �rst have to decide on a deep learning architecture that we will use. Since we are

going to process images, we choose to use a convolutional neural network as it will

be more cost-e�ective computationally and it is the common solution when training

on images. We start with the simplest architecture for our case: one convolutional

layer followed by one fully connected layer. The activation function at the output

will be a softmax function as it will give us the probabilities for the input to belong

into each class. We will start by �xing the resolution of the system to 0.2nm. The

resolution here is de�ned as the ratio between the wavelength range on which

we operate and the number of wavelength we can detect. Here we will start by

considering 100 di�erent wavelength on a 20nm wavelength range which �xes the

resolution to 0.2nm. Since we have 100 classes, the size of the output fully connected

layer is 100 nodes. Starting with a simple architecture and progressing towards more

complex architecture is the best way to �nd a simple architecture for which we can

obtain good performance.

We choose as starting parameters: the learning rate ;A = 0.001, the number of �lters

# 5 = 2, the size of the �lter ! = 3 × 3, the size of the pooling window % = 2 × 2,

the number of epochs is �xed at 500. Finding the right parameter combination that

will give good performance is done by parameter tuning. Parameters are tuned one

at a time, selecting the values that give the best results. Parameters were tuned,

comparing the learning process by analysing the learning curve. The learning curve

is the evolution of the accuracy on the training set through each iterations of the

program on the training set. The accuracy on the training set is de�ned as the ratio

between the number of good prediction in this set on the total number of predictions,
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the accuracy on the test set will be de�ned in the same way but applied to the test

set. This curve exhibits the learning behaviour of the model and constitute the main

metric to evaluate how a model learns.

Figure (5.5): Learning curve with starting parameter values

Figure 5.5 shows the learning curve for the model with the starting parameters.

We can see that the accuracy after 500 epochs is very low, even though we can

observe that the algorithm is learning because we do observe an increase in the

accuracy. To solve this problem we can try to increase the value of the learning rate

to obtain faster learning process.
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Figure (5.6): Learning curve for learning rate values ;A = 0.001, ;A = 0.01,;A = 0.1

Figure 5.6 shows the learning curve for di�erent values of the learning rate. We

can see that the low accuracy after 500 epochs in 5.5 is due to a low learning rate

that results in very slow learning. Increasing ;A speeds up the learning process and

we are able to obtain rapidly satisfying values of accuracy on the training set. We

will therefore �x ;A = 0.1.

Figure (5.7): Learning curve for number of �lters #5 = 1,#5 = 2,#5 = 4,#5 = 8,#5 = 16
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The in�uence of the number of �lter on the learning process is shown in �gure

5.7. We will want to choose the smallest number of �lter for which we will obtain

satisfying training accuracy. We can observe that there is no learning for a �lter size

# 5 = 1, the �lter is too small to be able to observe any learning. For # 5 = 2, the

algorithm manages to learn properly after a certain amount of time (learning starts

around 250 epochs), which is way later than the 3 other cases on which we will thus

focus on. The three most interesting cases are for # 5 = 4, # 5 = 8, # 5 = 16 which

shows similar learning process. It is a bit faster for # 5 = 4 but we will choose this

value mainly to reduce the complexity of the system since it is twice and 4 times

less �ltering computations than for # 5 = 8 and # 5 = 16.

Figure (5.8): Learning curve depending on �lter size

The impact of the �lter size is represented in �gure 5.8. We can see that as

we increase the �lter size, the algorithm is progressively less performant until the

algorithm doesn’t learn anymore for �lters of size (5 × 5). This can be explained

by the fact that smaller �lter will highlight smaller features in the image and the

algorithm will therefore be able to focus on smaller details. When the size of the

�lter becomes too big, the �ltering process will not be able to highlight these small

features. Filtering with bigger �lter therefore leads to a loss of information that will

cause the loss of features in the image that are important for the learning process.

Since a smaller �lters leads to more computations, we would want to choose the

biggest �lter for which we have satisfying results. Because the learning performances

seem identical for sizes (2 × 2) , (3 × 3) and (4 × 4) , our choice for the �lter size

will therefore be �lters of size (4 × 4).
Figure 5.9 shows the in�uence of the size of the Pooling �lter. This �gure shows that
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this parameter has the same in�uence has the �lter size. For the same reasons cited

for the previous parameter, we will choose a pooling �lter size of (4 × 4).

Figure (5.9): Learning curve depending on the pooling �lter size

Proposed Architecture

After parameter tuning, the proposed architecture is thus as follows: ;A = 0.1, # 5 = 4,

! = (4 × 4), % = (4 × 4).
The obtained learning curve shown in �gure 5.10 shows that the model can

achieve proper learning with 100 epochs.
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Figure (5.10): Learning curve of the designed model

This model was then evaluated on the test set and achieved an accuracy of 99%

of correct prediction. This model is therefore validated for the prediction of single

wavelength data in a range between 1565=< and 1584.8=< wavelength. This is

an important result as it shows that we managed to obtain a very high accuracy

with 0.2=< resolution. The resolution of fabrication of the PhC waveguide having

a wavelength resolution of 1.5=<, we can see that we managed to go beyond this

resolution limit that would, theoretically, not allow us to achieve higher resolution.

This shows that it is possible, using deep learning, to take advantage of the intrinsic

randomness of the PhC waveguide induced by the limitations in the fabrication

process to increase the resolution of the system.

It is even possible to go beyond 0.2=< resolution. Indeed this model managed to

achieved 97.7% accuracy on the test set on a 0.1=< resolution, which is increasing

the resolution beyond the resolution limit imposed by the PhC structure by 15 folds.

Even though there is a small drop in the accuracy on the test set due to the increase

in the number of classes in the deep learning model (going from 100 classes to 200

classes), the accuracy is still very high and the model is applicable. The learning

curve of this model is shown in �gure 5.11.



44 Chapter 5. Wavelength And Power Detection: Methods, Results and Discussion

Figure (5.11): Learning curve of the designed model on a 0.1=< resolution dataset

5.1.3 Learning on 1 Dimensional data
Even though the model presented above presents impressive performances, it is

interesting to �nd a way to simplify the model even further. The learning process

can be very heavy in terms of computations. The computational complexity of a

single layer can be estimated by looking at the number of operations performed in a

single layer. The main operation used in a convolutional neural network layer is the

matrix convolution which is given by:

~A,G,~ =

&∑
@=1

"G∑
D=1

#F∑
E=1

FA,@,D,EGG,@+D,~+E (5.2)

Where there are & input - (-1 . . . -@) of size "G × #G and ' outputs Y (.1 . . . .A ) of

size "~ × #~ . [54] The number of operation in a matrix convolution is therefore

given by &"G#F . The overall computational complexity of a convolutional neural

network is , using the big $ notation, given by

$ (
3∑
;=1

=;−1B
2

;
=;<

2

;
) (5.3)

[23] with ; the index of a convolutional layer, 3 the number of convolutional layers,

=; the number of �lters in the ;Cℎ layer (=;−1 is also the number of input channels of

the ;Cℎ layer), B; is the size of the �lter and<; the size of the output. This means that

the total execution time will asymptotically (i.e for large inputs) be proportional to∑3
;=1
=;−1B

2

;
=;<

2

;
. For large inputs the computational complexity can become very
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large and it might be interesting to see if we can reduce the complexity while

increasing the accuracy of the model. One method of reducing the complexity of the

model is to perform learning on 1 dimensional inputs and thus using 1 a dimensional

convolution network. In order to do, so we add more operations in the processing

stage in order to convert the 2D data into 1D data.

�ltering

The �ltering stage includes two operations and is added in the pre-processing stage:

The process of the image by an edge detection �lter and vertical averaging.The

role of the edge detection �lter is to highlight features to help the learning process.

Vertical averaging is done right after to reduce the data into 1D data. The input size

image before vertical averaging is 7 × 320 and the output will be a vector having a

size of 320. The vertical averaging process can be written has:

�> [ 9] =
1

7

7∑
8=0

�8 [8] [ 9] (5.4)

Where �> is the output vector after averaging, �8 is the image just before averaging.

Because we transform our 2 dimensional data into 1 dimensional data, there is an

unavoidable loss in information. It is in order to compensate this that the edge

detection �lter is important because it helps highlighting the important features in

the image in order to make the learning process more e�cient.

An edge detection �lter is a �lter that highlights edges in an image, in other words

strong variations between two regions in the image. In our case, it will highlight

the places where light localizes importantly in the image which is the feature that

interest us the most and that helps us improving the resolution beyond the resolution

limit of the structure.

A common edge detection �lter is the Sobel �lter, this edge detection Sobel

�lter computes the gradient accross the image to exhibit variations in pixel values

according to their position. It works on the assumption that the edges in the image

occurs where there is a discontinuity in the pixel values or a very steep intensity

gradient in the image. Using this assumption, it is possible to take the derivative of the

pixel values across the image and �nd points where the derivative is maximum, which

is where an edge will be located. The Sobel operator computes an approximation

of the gradient of the image which corresponds to convolving the image with two

�lters: "G that will calculate the G component gradient (which means it will detect

vertical edges) and "~ that will calculate the ~ component gradient (which mean it

will detect horizontal edges). [25] The expressions of these �lters are given by:

"G =


−1 0 1

−2 0 2

−1 0 1

 (5.5)
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"~ =


1 2 1

0 0 0

−1 −2 −1

 (5.6)

The sum of the outputs given by these two �lters will highlight the edges of the

input image. The result of edge detection �ltering is shown in �gures 5.12, 5.13 and

5.14.

Figure (5.12): Image for wavelength 1568=< before (left image) and after �ltering (right
image)

Figure (5.13): Image for wavelength 1575=< before (left image) and after �ltering (right
image)

Figure (5.14): Image for wavelength 1579=< before (left image) and after �ltering (right
image)
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Figure (5.15): Image for wavelength 1568=< after vertical averaging

Figure (5.16): Image for wavelength 1575=< after vertical averaging
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Figure (5.17): Image for wavelength 1579=< after vertical averaging

We can see from �gures 5.15,5.16 and 5.17 that vertical averaging keeps informa-

tion on the wavelength as we can spot the pixel at which light stops propagating.

We can also notice that the peak around pixel 320 corresponds to light scattering

at the output of the structure that we can see in the 2 dimensional images such as

�gure 5.1.

Figure 5.18 and 5.19 compares the learning process performance of the 1 dimensional

data when a sobel �lter is applied and when it is not. We can see that the model

manages to learn even without an edge detection �lter, but that the learning process

is signi�cantly enhanced when applying the sobel �lter. This is also re�ected in the

accuracy on the test set. The model that doesn’t involve any sobel �ltering has an

accuracy respectively of 90% and 88% on the test set for a wavelength resolution

of 0.2=< and 0.1=< while the model that applies sobel �ltering has a resolution of

respectively 98% and 96%. This clearly shows that sobel �ltering helps compensating

for the drop in accuracy due to the loss of information induced by the conversion

from 2 dimensional data to 1 dimensional data.
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Figure (5.18): Learning curve when applying sobel �lter for a resolution of 0.2=<

Figure (5.19): Learning curve when applying sobel �lter for a resolution of 0.1=<
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Comparison with 2 Dimensional Learning

Figure (5.20): Learning curve for 2D model and 1D model for a resolution of 2nm

Figure (5.21): Learning curve for 2D model and 1D model for a resolution of 1nm

We can see from �gure 5.20 and 5.21 that the learning process are similar for the 1

dimensional and the 2 dimensional case both 1nm and 2nm resolution . Either can
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therefore be used for application as they show good learning and satisfying accuracy

on the test set. Using 1 dimensional data o�er several advantages such as: lower

memory requirements (each image becomes 7 times smaller) and faster program

execution. Indeed the execution time will not be proportional to

∑3
;=1
=;−1B

2

;
=;<

2

;
as

shown for the 2 dimensional case in equation 5.3 but will become:

$ (
3∑
;=1

=;−1B;=;<; ) (5.7)

since B; and<; become vectors instead of square matrices of sizes B; × B; and<; ×<; .

5.2 Power detection for single wavelength input
A spectrometer is also supposed to be able to detect the power associated with each

wavelength. While this research focuses more on the detection of wavelengths, it

is interesting to see if it is possible, through the same method, to make predictions

on the power of the input signal. We are going to concentrate in this section on the

power prediction of a monochromatic signal (i.e a signal with only one wavelength

component). The power detection will be applied to the same wavelength range as

for the wavelength detection, which correspond to wavelengths between 1568=<

and 1584=< with a 0.1=< step. The power levels are between −93�< and 103�<

with a 13�< step (and therefore 13�< resolution). Figures 5.22, 5.23 and 5.24 show

examples of patterns for input signals with the same wavelength but di�erent powers.

Figure (5.22): 1575=< input light with −531< power
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Figure (5.23): 1575=< input light with 031< power

Figure (5.24): 1575=< input light with 531< power

We �rst try to use the same cut as for the wavelength detection (cutting around

the waveguide).

Figure (5.25): Image for 1575=< input light with −531< power cut around the waveguide

Figure (5.26): Image for 1575=< input light with 031< power cut around the waveguide

Figure (5.27): Image for 1575=< input light with 531< power cut around the waveguide



5.2. Power detection for single wavelength input 53

Figure (5.28): Learning curve for power detection when the image is cut around the
waveguide

We can see from �gure 5.28 that the algorithm manages to learn correctly and

reaches a value of accuracy on the training set equal to 100%. Nevertheless, the

accuracy on the test set is 42% which is very low. This big di�erence between

accuracies of test set and training set can be interpreted as the model over�tting on

the training set. The poor performances can be understood by the fact that the data

for di�erent powers are pretty similar as we can see in �gures 5.25, 5.26 and 5.27. It

seems more suitable to cut the image around the input of the structure as shown in

�gures5.29, 5.30 and 5.31 and taking advantage that light scatters at the input, the

scattering being stronger for higher powers.

Figure (5.29): Image for 1575=< input light with −531< power cut around the input
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Figure (5.30): Image for 1575=< input light with 031< power cut around the input

Figure (5.31): Image for 1575=< input light with 531< power cut around the input

Figure (5.32): Learning curve of the power detection for a 1dbm resolution

We can see in �gure 5.32 that the learning process seems very slow because the

curve is still increasing after 2000 epochs and does not seem to saturate yet. The
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obtained accuracy on the test set was 80% which is way better than when cutting

around the waveguide, but still not su�cient to be able to use it con�dently in

application.

5.3 Multiple wavelength detection

5.3.1 Modi�cation of the architecture
There is one fundamental modi�cation that has to be done in our architecture to be

able to apply it to our architecture. For single wavelength data, we used softmax as

an activation function, which is the most suited activation function for single label

classi�cation. When dealing with multiple wavelength detection, we have to be able

to predict all the wavelengths in a signal, without knowing beforehand how many

wavelength components are present in this signal. If we are predicting wavelengths

in a range between wavelengths _1 and _2 with a resolution of=, the only information

we have on the number of wavelength components in the signal is that it is located

between 1 and
_2−_1

=
. We are therefore facing a multi label classi�cation problem [49,

50] which means that, contrary to the single wavelength prediction case, one data

can belong to multiple classes at the same time. For example, one signal having

wavelength components _1,_2 and _3 will belong to these three classes. The �rst

impact of this modi�cation in the nature of the problem itself is that we have to

change the activation function. Softmax outputs dependent probabilities between

each classes and we have to select the highest probability as being the prediction,

which makes it suitable for single label classi�cation, but for multi label classi�cation

we need an activation function that would output independent probabilities since

there are no dependence between the di�erent classes in the way one piece of data

would belong to di�erent classes at the same time. We therefore choose to use the

sigmoid activation function that outputs a con�dence coe�cient between 0 and 1

for each classes for the data to belong to these classes.

5.3.2 Selecting the number of wavelengths in the prediction
An important point to consider is: how do we select the number of wavelengths for

our prediction since we don’t know beforehand how many wavelength components

are present in the signal? We have to decide for a threshold to be able to select the

wavelengths that we will choose for our prediction. The naive method would be

to set the threshold to 0.5 because the sigmoid function outputs for each possible

class a con�dent coe�cient between 0 and 1. But nothing indicates that this method

is optimal or will give accurate predictions. Instead, we decide to use the metrics

de�ned in chapter 4. The idea is to train our model with a training set and test it with

a test set as for the single wavelength prediction. The di�erence is that afterwards

we will compute for each test prediction a metric for di�erent values of threshold,

and choose the threshold corresponding to the highest value of this metric.
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Hot encoded representation of label

Four metrics were introduced previously to evaluate a prediction: The accuracy,

The precision, the recall and the FScore. These metrics are computed by counting

the number of true positives (TP), true negatives (TN), fake positives (FP) and fake
negatives (FN) of a prediction. This means that we have to represent our label as hot
encoded values. Hot encoded values are values represented as a set of 0’s and 1’s.

We therefore have to �nd a way to represent a vector of wavelength values into a

vector of 0’s and 1’s. The way to proceed is to create a vector whose size is the same

as the total number of classes (the total number of wavelength we can predict). Each

position in this vector will correspond to a wavelength. All 1’s in the vector will be

located at a position where the corresponding wavelength component is present in

the signal, the position of the 0’s will indicate that the corresponding wavelengths

are not in the signal. Let’s take the example where we detect wavelengths between

1568=< and 1581=< with 1=< step, which means we can detect 14 wavelengths. This

means that there are 14 di�erent classes and our vector representing the label for this

data will have 14 elements. The �rst of this vector will correspond to wavelength

1568=<, the second 1569=< and so on up to the fourteenth position corresponding

to 1581=<. If our input signal has two wavelengths components at 1570=< and

1573=<, this means that it will have a 1 at positions 3 and 6 and 0’s at the other

position. [
1570=<, 1573=<

]
→

[
0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

]
[
1568=<, 1581=<

]
→

[
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

]
[
1574=<

]
→

[
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

]
Once the label of the prediction is transformed into a hot encoded label, we can

compute the number of TP, TN, FP and FN for the prediction. Here, the number

of TP will be the number of 1’s correctly predicted, the number of TN will be the

number of 0’s correctly predicted, the number of FP will be the number of 1’s badly

predicted and the number of FN will be the number of 0’s badly predicted. For

example, if a signal has label � =
[
1568=<, 1575=<

]
and we perform prediction

�̂ =
[
1568=<, 1574=<

]
(one of the predicted value is wrong), we obtain the following

hot encoded representation:

� =
[
1568=<, 1575=<

]
→

[
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

]
�̂ =

[
1568=<, 1575=<

]
→

[
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

]
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In this example, one 1 is correctly predicted, eleven 0’s are correctly predicted, one 1

is badly predicted and one 0 is badly predicted, which gives the following values:

)% = 1

)# = 11

�% = 1

�# = 1

Using equations 3.8, 3.9, 3.10 and 3.11 we can compute the value for the four metrics:

�22DA02~ = 0.857

%A428B8>= = 0.5

'420;; = 0.5

�(2>A4 = 0.5

Choice of metric to be used

We need to choose one metric that will help us selecting a threshold for our pre-

dictions. As explained previously, the Accuracy is suited in the case were there are

similar amount of 0’s and 1’s in the hot encoded values, otherwise the accuracy

will always reach very high values and will mislead us during our evaluation of the

performance. In our case we will typically have a signi�cantly bigger amount of 0’s

than 1’s.

Our focus goes towards minimizing the number of mistakes rather than maximizing

the number of correctly predicted values. We prefer for our application to miss a

correct value, rather than predicting wrong values. Therefore, our priority goes

towards minimizing the number of FP’s and FN’s. This can be done looking at

equations 3.9 and 3.10 by maximizing the Precision and Recall. It is possible to

maximize both by maximizing the FScore (equation 3.11 that takes both Precision

and Recall into account).

In order to �nd a threshold, we will therefore compute the average FScore on

the dedicated dataset for values of threshold from 0 to 1 with a 0.005 step and select

the threshold giving the maximum FScore.

5.3.3 2nm resolution
We will �rst concentrate on the prediction of multi wavelength component signal

with 2=< resolution. The same method of parameter tuning was used as for the

prediction of single wavelength data, we will present here three models that were

considered. Model A possess a similar architecture as for single wavelength detection:
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1 convolutional layer with 4 �lters of size 4 × 4 and a pooling layer of size 4 × 4., the

learning rate is ;A = 0.1 for model A and will be �xed to ;A = 0.05 for models B and

C. The di�erent models are illustrated in �gures 5.33, 5.34 and 5.35.

Figure (5.33): Schematic of model A, learning rate is �xed to 0.1

Figure (5.34): Schematic of model B, learning rate is �xed to 0.05
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Figure (5.35): Schematic of model C, learning rate is �xed to 0.05

All 3 models achieved learning in 100 epochs, the learnin process is illustrated in

�gures 5.36.

Figure (5.36): Learning curve for models A,B and C

As explained previously, we are going to compare the performance of the di�erent

models by looking at the average FScore on the test set for values of threshold

between 0 and 1 and select the model that manages to achieve the highest average

FScore. We are then going to choose as a threshold the value corresponding to

the maximum FScore of the chosen model. The maximum average FScore and the

corresponding maximum for models A, B and C are summarized in table 5.1.
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Model Maximum average FScore Threshold corresponding to maximum

A 0.35 0.05

B 0.46 0.05

C 0.52 0.05

Table (5.1): Performance of the di�erent models.

Figure (5.37): Average FScore on validation set in function of the threshold for models A,B
and C

We can see that the model showing the best performance is model C because

it has the highest maximum out of all three models as shown in �gure 5.37. The

corresponding average FScore is 0.52 and corresponds to a threshold of 0.05. Figure

5.38 shows the average maximum FScore on the dataset with regard to the threshold

at the output of the network. We select as the threshold one which corresponds

to the maximum of the curve. Figure 5.39 shows one example of the output of the

model for a prediction of a signal containing wavelength components 1572nm and

1576nm, illustrating the method used to perform prediction using the computed

threshold.
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Figure (5.38): Average FScore on validation set in function of the threshold for models C,
we choose the threshold corresponding to the maximum of the curve

Figure (5.39): Output of the network for a prediction of a signal containing wavelength
components 1572nm and 1576nm. We can see that using the threshold previously found we
can detect correctly the two wavelength components.
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Correct Predictions error on number of components No wavelength predicted

Model A 61.3% 0.4 36%

Model B 0% 0.91 0%

Model C 88.6% 0.13 11%

Table (5.2): Performance of the di�erent models. The �rst column represents the number
of correct prediction (correct wavelengths values and correct number of wavelength com-
ponents), the second column represents the average error on the number of wavelength
components and the last column represents the percentage of cases were no wavelengths
are predicted.

Using this model, we will therefore select as predictions all wavelengths that

show a con�dent coe�cient given by the sigmoid function higher than 0.05.

As we can see in table 5.2, the low FScore of model A can be explain by the very

low percentage of correct predictions. Model B has a high number of True Positives

(it predicts the wavelength values correctly) which his shown by the highest FScore

than model B but the number of correct predictions is very low because it predicts

most of the time too many wavelengths components, which is shown by its high

average error on the number of wavelength components. Model C clearly stands out

as the best model out of the three models. Considering the performances of model

C, we will de�ne a satisfying model as being a model with an FScore of at least 0.5.

When trying to improve the resolution up to 1nm using the same model, we

obtain the learning curve and FScore-threshold curves given respectively by �gure

5.40 and 5.41. The obtained threshold is 0.05 and the corresponding maximum FScore

is 0.34.
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Figure (5.40): Learning curve for a resolution of 1=<

Figure (5.41): Average FScore on validation set in function of the threshold for models C
for a resolution of 1=<

Keeping the resolution to 1nm, if we train the model on multi-wavelength compo-

nent data whose wavelengths are separated by at least 2nm, the FScore signi�cantly

rises. The corresponding learning curve and FScore-threshold curve are respectively

given by 5.49 and 5.43.
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Figure (5.42): Learning curve for model C after training on arti�cial data with a resolution
of 1=<

Figure (5.43): FScore for 1nm resolution when trained and test with multi-wavelength
component data whose wavelengths are separated by at least 2nm

This can be explained by the fact that multiple wavelength data with wavelength

components that are very close have their wavelength component that localizes in
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the same section of the chirped waveguide and makes the learning process more

di�cult as the resulted pattern is not just a linear superposition anymore.

As we did with the prediction of single wavelength component data, we can try

to learn on 1 dimensional data by performing an additional �ltering step in the pre-

processing stage. We notice that the program doesn’t manage to learn and mainly

stays around an accuracy on the training set of 22%. With this model we are thus

restrained to using 2D data for the prediction of multiple wavelength components

data. The corresponding learning curve is given by �gure 5.44.

Figure (5.44): Learning curve of model C applied to the 1 dimensional data

5.3.4 Arti�cial Data
As it can be seen previously, the dataset for the prediction on multiple wavelength

component signals is quite small, and it is strongly believed that increasing the size of

the dataset would lead to an increase in the accuracy of the model because the dataset

would be more representative of the data it could encounter. Nevertheless, collecting

a large dataset of multiple wavelength component data can be quite di�cult. Indeed,

the number of combination between all the possible classes is very high. The number

of combinations of pairs between signals for n wavelength on each of the k power

levels taken is given by equation 5.8.

:2
(= − 1)=

2

+ = (: − 1):
2

(5.8)

which for a dataset composed of 14 wavelengths over 19 powers corresponds to a

dataset of 35245 elements. We can try to reduce this number by considering the fact

that, since we will combine this dataset with single wavelength data we can ignore
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the combinations between elements that have the same wavelength component but

di�erent power, which leads to the expression in equation 5.9.

:2
(= − 1)=

2

(5.9)

which for a dataset composed of 14 wavelengths over 19 powers corresponds to a

dataset of 32851 elements, which still makes it unrealistic to collect this amount of

data experimentally. The details of the computations to �nd equations 5.8and 5.9

can be found in the appendix. Furthermore, the number of possible combination

would explode if we want to be able to perform prediction for signals containing

more than 2 wavelength components. It is thus worth considering the generation of

simulated multiple wavelength data, which is multiple wavelength data that we will

be generated arti�cially based on the single wavelength component dataset. We thus

generate multiple wavelength component data by simply superposing two images by

adding them. An example of generation of multiple wavelength component data is

represented in �gure 5.45. The features are conserved compared to the corresponding

data taken experimentally as shown in �gure 5.46.

Figure (5.45): Addition of images of two single wavelength data images to obtain compu-
tationally a representation of multi wavelength data
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Figure (5.46): Comparison between an image obtain experimentally by combining wave-
lengths around 1579=< at −73�< and 1571=< at −73�< and an image obtain computa-
tionally by addition between single wavelength data corresponding to these two wavelengths.
We can see that we can observe important features that are similar for the two pieces of
data: the light localization observed for the wavelength component around 1579.17=< and
the spot where light stops localizing for the component at 1571=<

By using this method, we can easily generate a dataset containing all possible

combination of 2 wavelength components. The dataset that is used is composed of

the computationally obtained multi wavelength data and the experimental single

wavelength data. We manage to obtain a good learning process with a simpler

model than the one we used with the experimental data as it is only composed of 2

convolutional layers as illustrated in �gure 5.47.

Figure (5.47): Architecture used to train on arti�cial data
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We obtain a maximum FScore of which is comparable to the FScore previously

obtained with experimental data. The FScore-threshold curve of the corresponding

model for 1nm and 2nm resolution are given respectively in �gure 5.48 and 5.48.

Figure (5.48): Average FScore on validation set in function of the threshold for model C
after training on arti�cial data with a resolution of 2=<

Figure (5.49): Average FScore on validation set in function of the threshold for model C
after training on arti�cial data with a resolution of 1=<
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Chapter 6

Summary and possible
improvements

Several researches were made towards using photonic crystals to design an optical

spectrometer in order to reduce signi�cantly the size and cost of these devices. The

main problems with the devices that were proposed was that they are either limited

by fabrication errors or they are structures that fully rely on randomness in the

structure which makes the pattern recognition more complicated and less intuitive.

In this work, we presented a structure that is meant to overcome both this two

issues by relying on both order and disorder properties. Using a chirped photonic

crystal waveguide we demonstrated that we can obtain high wavelength resolution

by using deep learning. With this structure we managed to detect wavelengths

between 1565 nm and 1585 nm with an outstanding 0.1 nm resolution, which is

much higher (15 folds) than the structure resolution limited by the fabrication.

Considering the very high obtained accuracy, it might even be possible to increase

even further the resolution. This demonstration shows not only that fabrication

randomness can be overcome, but also that it can even be actively used to enhance

the performance of nanophotonic devices if they are combined with a good data

processing approach such as deep learning. The accuracy obtain for this system

is 97% which showed that we can achieve very high accuracy with a very simple

Convolutional Neural Network (CNN) model having only one convolutional layer.

By using more complex CNN models, it was possible to perform prediction on

multiple wavelength components signal having up to 2 components with a rate

of correct predictions on both the number of frequency components and correct

frequency values of 88.7 % . We even showed that it was possible to increase the size

of the dataset for multiple wavelength components prediction by computationally

generate multiple wavelength components data based on the experimental single

wavelength component data and perform prediction with performances similar as

using experimental data, which makes the process of data acquisition easier since

we just have to acquire single wavelength component data.

On the other hand, some limitations can be pointed out for such a system. First,

given that the performances signi�cantly decreased when going from single to

multiple wavelength prediction (the resolution going from 0.1nm to more than

1nm and the rate of correct predictions dropping) we can imagine that performing

predictions for more than 2 wavelength components will become very hard as we
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will always need bigger datasets and more complex models. Even though we can

create bigger datasets by generating multiple wavelength data computationally,

the size of the dataset will considerably increase when increasing the number of

wavelength components, which is shown by equation 5.9.

Another possible limitation that was not discussed in this work is the in�uence

of temperature on this device. The refractive index of a material changes with

temperature [17]. A variation of temperature will therefore induce a variation of

refractive index that could potentially modify the pattern that the input light exhibits

in the structure. If the pattern are too temperature sensitive, it could be the case

that a change in temperature would change the pattern and make it too di�erent

compared to the patterns the model learned from. It is thus worth to complete this

work by investigating this possible issue.

Nevertheless, this innovative design of an optical spectrometer shows promising

signs towards the design of high resolution, small footprint and low cost optical

spectrometer devices.
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Appendix A

Proof of the size of arti�cial dataset

In this appendix, we will demonstrate how to obtain equations 5.8 and 5.9. Let’s

assume a dataset composed of = frequencies for each of : power levels. We will note

08 9 an element of this dataset having frequency 8 and power 9 . We can arrange this

dataset in a matrix as follows:

� =


011 012 . . . 01:
...

. . .
...

0=1 . . . . . . 0=:

 (A.1)

Where every elements on the same row has the same frequency and every elements

on the same column has the same power. We will �rst demonstrate equation 5.8

which results as answer teh following question: How many pairs (08 9 , 0G~) can we

form such that 8 ≠ G and 9 ≠ ~.

We can observe that the �rst element 011 can combine with the : − 1 elements on its

own row and the (= − 1): other elements in the matrix, it can therefore combine

with (= − 1): + (: − 1) elements. The second element will combine with the (= − 1):
other elements in the matrix and the remaining : − 2 elements on its row which

corresponds to (= − 1): + (: − 2) pairs. By repeating the same process for all the

elements on the �rst row we obtain a number of combinations containing an element

of the �rst row equal to:

:∑
8=1

((= − 1): + (8 − 1)) = (= − 1):2 + : (: − 1)
2

(A.2)

We can repeat the same process with the elements of row 2 that will combine

with the elements on its own row and the remaining = − 2 rows. The total number

of combination containing at least one element of row 1 and 2 will therefore be

(= − 1):2 + : (:−1)
2
+ (= − 2):2 + : (:−1)

2
. Repeating this process for every rows, we

obtain the number of distinct pairs we can make which is given by:

=∑
8=1

((8 − 1):2 + : (: − 1)
2

) = :2
(= − 1)=

2

+ =: (: − 1)
2

(A.3)

To prove equation 5.9 we follow the same process but since we have to ignore

the pairs having the same frequency, which means pairs of elements on the same
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line of matrix �, we have to ignore the term of combination between elements on

the same line which correspond to the second term of equation A.3 which gives the

following expression:

=∑
8=1

(8 − 1):2 + : (: − 1)
2

= :2
(= − 1)=

2

(A.4)
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