論文要旨

マイクロコムとは、光を微小領域に閉じ込めることで生成できる、等間隔な周波数成 分で構成された光信号である.応用例の1つに大容量光通信があり、多重化する数と同 じ台数のレーザを用いる必要があった従来の波長分割多重通信を、1台のレーザと1つ の微小共振器で代替できるため、小型化や省エネルギー化を実現できる.様々なマイク ロコムの中で、近年特に注目を集めているのが、パーフェクトソリトンクリスタルであ る.これは散逸性カーソリトンと呼ばれるモード同期したパルスが等間隔に存在する特 殊な状態であり、高効率化や低ノイズ化を実現することができると期待されている.そ こで本研究では、弱い光を強く吸収する特性である可飽和吸収効果を用いてパーフェク トソリトンクリスタルを発生させる、新たなアプローチを提案する.まず数値解析を用 いてこのメカニズムが有効であることを示し、その発生メカニズムを明らかにした.実 験では、微小球共振器を作製し、散逸性カーソリトンを発生させるための技術を確立し た.そして可飽和吸収体として知られるグラフェンを共振器に付与し、シミュレーショ ンに合致する結果を得た.

第1章では、本研究の背景や目的について述べる.

第2章では、微小共振器の基礎と、光の伝搬や導波路との結合に関する理論について 述べる.

第3章では、可飽和吸収効果を組み込んだ計算モデルの作成を行い、パーフェクトソ リトンクリスタルが発生できることをシミュレーションで示す.

第4章では、数値解析によりパーフェクトソリトンクリスタルの詳細な発生条件に関 して議論する.

第5章では、微小光共振器の作製と、可飽和吸収体が存在しない状態での、散逸性カ ーソリトンの発生実験について述べる.

第6章では,可飽和吸収体であるグラフェンを付与した微小光共振器での,散逸性カ ーソリトンの発生実験について述べる.

第7章では、本研究を総括し、結論と今後の展望を述べる.

Thesis abstract

Study on generation of soliton pulses through saturable absorption

A Microcomb is a light source composed of equally spaced frequency components. We can generate it by confining light in a tiny space such as micro cavity. One of the applications of microcombs is a high-capacity optical communication. In a conventional wavelength division multiplexing, we needed the same number of lasers as the number of wavelengths to be multiplexed. However, with a microcomb technologies, we can replace multiple lasers with a single laser and a single microcavity, leading to miniaturization and energy savings. Recently, among various microcomb states, perfect soliton crystal has attracted a lot of attention. This is a special state in which mode-locked pulses called dissipative Kerr solitons are aligned at equal intervals, enabling higher power and lower noise. In this study, I propose a new approach to generate perfect soliton crystals using a saturable absorption effect, which is a property that strongly absorbs weak light. I first demonstrated the effectiveness of this approach by numerical analysis, and then revealed the generation mechanism of perfect soliton crystals. In experiments, I fabricated a microsphere resonator and established a technique for generating dissipative Kerr solitons. And finally, I attached a graphene, a carbon material known as a saturable absorber, to a microresonator and conducted the experiments to generate dissipative Kerr solitons, resulting in a good agreement with simulations.

Chapter 1 describes the background and purpose of this study.

Chapter 2 describes the fundamentals of microcavities and the theory of light propagation and coupling with a waveguide.

Chapter 3 describes a calculation model that incorporates a saturable absorption effect, and numerically shows that perfect soliton crystals can be generated with a help of saturable absorber.

Chapter 4 describes the detailed conditions that need to be met to generate perfect soliton crystals.

Chapter 5 describes the fabrication of microsphere cavity and the experiments to generate dissipative Kerr solitons in the absence of saturable absorber.

Chapter 6 describes the experiments to generate dissipative Kerr solitons with a graphene as a saturable absorber.

Chapter 7 summarizes this study and describes conclusions as well as prospects.

目次

第1部	序論	5
1.1	はじめに	5
1.2 1.2.1 1.2.2	微小光共振器 光共振器とは	6 6 6
1.3 1.3.1 1.3.2	光周波数コムとマイクロコム 光周波数コムとは	9 9 11
1.4 1.4.1 1.4.2 1.4.3 1.4.4	散逸性カーソリトン 散逸性カーソリトンとは	 12 12 12 14 16
1.5 1.5.1 1.5.2 1.5.3	可飽和吸収体 可飽和吸収体とは	19 19 19 22
1.6 第2部	本研究の目的 理論	22 24
2.1 2.1.1 2.1.2 2.1.3	共振器の特性 <i>Q</i> 値	24 24 26 28

2.2	導波路との結合	30
2.3 2.3.1 2.3.2 2.3.3	マイクロコムの数値解析 Lugiato-Lefever 方程式	32 32 34 37
第3部	可飽和吸収効果の組み込み	40
3.1 3.1.1 3.1.2 3.1.3	数値解析プログラムの作成 シミュレーションの対象計算モデル	40 40 41 42
 3.2 3.2.1 3.2.2 3.2.3 3.2.4 	シミュレーション結果 スペクトルと時間波形 シミュレーションを繰り返した場合 パルス間隔 変換効率 パーフェクトソリトンクリスタルの発生条件に関する考察	44 47 49 50
4.1 4.1.1 4.1.2	デチューニングとポンプパワー 実効デチューニングの導出	52 52 53
4.2 4.2.1 4.2.2	分散 チューリングロール 分散によるソリトンクリスタルの個数の変更	55 55 56
4.3 4.3.1 4.3.2	変調深さ 異なる変調深さが与える影響 パーフェクトソリトンクリスタルの個数が切り替わる境界	58 58 59

4.4	回復時間	61
4.4.1	遅い可飽和吸収	61
4.4.2	遅い可飽和吸収によるパーフェクトソリトンクリスタルの発生	62
第5部	パーフェクトソリトンクリスタルの発生に向けた実験	64
5.1	共振器の作製	64
5.1.1	実験の方針	64
5.1.2	微小球共振器の作製	65
5.2	ソリトン発生	67
5.2.1	実験セットアップ.................................	67
5.2.2	カップリングの工夫	69
5.2.3	非線形光学効果の観測	70
5.2.4	ソリトン発生	71
5.2.5	シミュレーションとの違い	72
第6部	可飽和吸収体の付与	74
第6部 6.1	可飽和吸収体の付与	74 74
第6部 6.1	可飽和吸収体の付与 グラフェン添加微小球共振器の作製 グラフェンの剥離	74 74 74
第6部 6.1 6.1.1 6.1.2	可飽和吸収体の付与 グラフェン添加微小球共振器の作製 グラフェンの剥離	74 74 74 75
第6部 6.1 6.1.1 6.1.2	可飽和吸収体の付与 グラフェン添加微小球共振器の作製 グラフェンの剥離	74 74 74 75
第6部 6.1 6.1.1 6.1.2 6.2	可飽和吸収体の付与 グラフェン添加微小球共振器の作製 グラフェンの剥離	74 74 74 75 76
第6部 6.1 6.1.1 6.1.2 6.2 6.2.1	可飽和吸収体の付与 グラフェン添加微小球共振器の作製 グラフェンの剥離	74 74 75 76 76
第6部 6.1 6.1.1 6.1.2 6.2 6.2.1 6.3	可飽和吸収体の付与 グラフェン添加微小球共振器の作製 グラフェンの剥離 大振器への転写 共振器への転写 ワ値の変化 ソリトン発生	74 74 75 76 76 77
第6部 6.1 6.1.1 6.1.2 6.2 6.2.1 6.3 6.3.1	可飽和吸収体の付与 グラフェン添加微小球共振器の作製 グラフェンの剥離 大振器への転写 共振器への転写 ワ値の変化 ソリトン発生 一直線に伸びるソリトンステップ	74 74 75 76 76 77 77
第6部 6.1 6.1.1 6.1.2 6.2 6.2.1 6.3 6.3.1 6.3.2	可飽和吸収体の付与 グラフェン添加微小球共振器の作製 グラフェンの剥離 共振器への転写 共振器への転写 ワ酸化 ・ ワ酸化 ・ <t< td=""><td>74 74 75 76 76 77 77 78</td></t<>	74 74 75 76 76 77 77 78
第6部 6.1 6.1.1 6.1.2 6.2 6.2.1 6.3 6.3.1 6.3.2	可飽和吸収体の付与 グラフェン添加微小球共振器の作製 グラフェンの剥離 ナ振器への転写 共振器への転写 ウ酸化 ・ ウ酸化 ・ <t< td=""><td>74 74 75 76 76 76 77 77 78</td></t<>	74 74 75 76 76 76 77 77 78
第6部 6.1 6.1.1 6.1.2 6.2 6.2.1 6.3 6.3.1 6.3.2	可飽和吸収体の付与 グラフェン添加微小球共振器の作製 グラフェンの剥離 共振器への転写 共振器への転写 ウ酸化 ウ酸化 ウリトン発生 一直線に伸びるソリトンステップ ソリトンステップの評価 紡論	74 74 75 76 76 77 77 78 80
第6部 6.1 6.1.1 6.1.2 6.2 6.2.1 6.3 6.3.1 6.3.2 第7部	可飽和吸収体の付与 グラフェン添加微小球共振器の作製 グラフェンの剥離 大振器への転写 共振器への転写 ウ酸変化 ウレトン発生 一直線に伸びるソリトンステップ ソリトンステップの評価 お論	74 74 75 76 76 77 77 78 80
第6部 6.1 6.1.1 6.1.2 6.2 6.2.1 6.3 6.3.1 6.3.2 第7部	可飽和吸収体の付与 グラフェン添加微小球共振器の作製 グラフェンの剥離 共振器への転写 共振器への転写 ウ酸化 ウ酸化 ウ酸化 ウリトン発生 一直線に伸びるソリトンステップ ノリトンステップの評価 法	74 74 75 76 76 77 77 78 80

謝辞

84

91

4

第1部

序論

1.1 はじめに

新型コロナウイルス感染症の発生が報告されてから,およそ3年が過ぎようとしてい る. 収束する気配は未だ見られず,油断できない状況が今もなお続いている.しかし今年 度から,人数制限や入国条件などの規制緩和が徐々に進み始めた.現在はポストコロナの 時代へ移行する,大きな転換点であるのかもしれない.振り返ると,新型コロナウイルス の感染が拡大する前ではあまり見られなかった,オンライン授業やリモートワークが急激 に浸透するなど,社会が大きく変化した.もちろん対面でしかできないこともあるが,離 れていてもインターネットを介してコミュニケーションできるメリットを,多くの人が感 じたことであろう.

これらの技術を下支えしているのが光技術である.光に対する研究の起源は紀元前にま で遡る.「幾何学の父」とも称される Euclid は光の直進や反射に関する性質を発見した. そして時を経て 17 世紀には,光の正体に関する議論が盛んに行われた.プリズムを用い た分光実験を行った Newton は「光は粒子である」と提唱した一方,波動の伝搬の解析で 知られる Huygens は「光は波である」と提唱したのである.その後,多くの科学者により 様々な実験が行われ,そこでの現象を説明するために,光は粒子の性質と波の性質を併せ 持つと考えられるようになった.そして 20 世紀になると,Einstein が誘導放出に関する 理論を提唱し,1960 年には Maiman が世界初のレーザを実現した.それを皮切りに,光 の伝送路となる光ファイバ技術の進歩と相まって技術革新が進み,光による大量かつ高速 な通信技術が発展した.

その結果,現在は大量のデータを日々やりとりする高度情報社会となった.新型コロナ ウイルス感染症の流行という時代背景に加え,モノがインターネットに繋がる IoT 化や, 第5世代移動通信システムの普及などが,通信トラフィック量の増加を後押ししており, その需要に耐え得る大量のデータを送受信する技術が望まれている.さらに,低消費電力 でそれを実現することも重要である.化石燃料を中心とする発電システムが主流である現 状では,地球環境への負荷が大きく,このままでは深刻な環境問題を引き起こしかねない.

本研究は,微小光共振器と呼ばれる小型な光学素子を用いた,マイクロコムに関する研 究である.マイクロコムは,2005年にノーベル物理学を受賞したことで知られる光コム を微小光共振器上で実現する技術であり,少ないエネルギー損失で高速なシステムを実現

5

できる光集積回路へ搭載することが期待されている.本研究では,マイクロコム発生において,可飽和吸収体と呼ばれる物質と組み合わせることで,更なる大容量化,高効率化を 実現することを目指した.この研究の成果が,これからの社会の発展の一助となれば幸い である.

1.2 微小光共振器

1.2.1 光共振器とは

共振とは特定の周波数の振動が加えられた際,その周波数で大きく振動する現象であ る.この共振現象は,様々な場所で目にすることがある.例えばブランコでは,その固有 振動数に合わせて力を加えることにより,大きく漕ぐことができる.またアコースティッ クギターを演奏する際には,弦の周波数とギター本体の固有振動数が一致する場合に,大 きな音が発生する.このような共振現象を光で実現するのが,光共振器である.光共振器 の構成例として,高い反射率を持つ平面鏡を2枚向かい合わせた構造が挙げられる.その 場合,Fig.1.1に示すように,定在波を形成できる波長のみが安定して共振器内に存在し, 強く閉じ込められることとなる.

Fig. 1.1 Schematic illustration of standing waves in a Fabrit-Pérot cavity.

光共振器の中でも特に小型な素子を微小光共振器と呼ぶ.光を微小領域に強く閉じ込めることで,物質との相互作用を高めることができる.そのため共振器量子力学 (cavity QED)のプラットフォーム ^[1] や,ガスのセンシングデバイス ^[2] として利用される.高い閉じ込め効果を用いて,非線形光学効果を容易に発生できる特性を生かしたマイクロコムに関しては,本研究に深く関わるため,別の章で詳しく述べる.

1.2.2 微小光共振器の種類

微小共振器は,光の閉じ込め方によって様々な種類に分類される.先述した平面鏡を2 枚向かい合わせたファブリペロー型共振器と呼ばれる構造以外に,ウィスパリングギャラ リーモード共振器 (WGM 共振器),マイクロリング共振器,フォトニック結晶共振器など がある.

WGM 共振器

WGM 共振器は,全反射の性質を利用して光を閉じ込める,円形の共振器である.この 名はロンドンのセントポール大聖堂で見られる「ささやきの回廊」に由来する.セント ポール大聖堂には円形の回廊があり,そこで話した小さな声は,反射を繰り返し,回廊の 反対側にいる人にまで伝わることが知られている.声が回廊の側壁を伝わる代わりに,光 が共振器を伝わるのが,この WGM 共振器である.

全反射を繰り返して周回することがこの共振器の特徴であるので,共振器の形状は多種 多様なものが存在する. Fig. 1.2 に示すように,これまでスフィア型,ロッド型,ボトル 型,ディスク型,トロイド型などの形状が考案された.

Fig. 1.2 Various types of WGM microresonators.(a) Microsphere. (b) Microbottle. (c) Microbottle. (d) Microdisk. (e) Microtoroid.

共振器の材料も様々なもので実現された.まず SiO₂ は,2003 年に高 *Q* 値な微小光共振器が作製できることが報告された^[3].そして,トロイド共振器で世界初のマイクロコムが実証され^[4].近年の研究においても,SiO₂ は広く用いられている^[5,6].

また,結晶材料も用いられることの多い材料の1つである.材料吸収が少なく,その大 きなモード体積により SiO₂ よりも高い *Q* 値を示すことが知られており,初めての散逸性 カーソリトンの実証^[7] でも用いられた.結晶材料の例を挙げると MgF₂^[8] や CaF₂^[9] があ り,一般的に切削や研磨によって共振器へと加工される.しかしながら,共振器のサイズ が数 100 μm から数 mm と大きいものが一般的であり,集積に向いていないことが欠点で ある.

マイクロリング共振器

マイクロリング共振器は,WGM 共振器と同じく屈折率差によって光を微小領域内にと どめるのだが,導波路中に閉じ込める点が異なる.SiO₂ や結晶材料の共振器と比較する と Q 値は比較的低いが, CMOS 互換プロセスによって作製されるため, 精密な設計が可 能であり, 集積化にも適している. 具体的には Si, SiN, AlN, GaAs などが材料として 用いられているが, 中でも注目を集めているのは Fig. 1.3 に示す SiN である. SiO₂ より も 1 桁大きい非線形屈折率を持つことに加え, 通信波長帯においてバンドギャップが大き く多光子吸収が生じにくいことが利点である.

Fig. 1.3 A scanning electron micrograph of a silicon nitride microring resonator coupled to a bus waveguide. [J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, "CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects," Nat. Photonics **4**, 37–40 (2010). Reproduced with permission from Springer Nature.]

フォトニック結晶共振器

最後にフォトニック結晶共振器について述べる.フォトニック結晶とは,屈折率の異な る誘電体を光の波長程度の周期で並べた構造体である.屈折率が異なる材料の界面では反 射が生じるため,周期的に並んだ誘電体に光を入射する場合,それぞれの境界面で反射 し,一部の光は入射方向に戻る.光は波であるため,その反射して戻ってくる光の位相が 揃う場合には強め合いが生じ,ある特定の波長だけが強く反射され,その波長の透過率は 0に近づく.これをブラッグ反射というが,この現象によって光を閉じ込めるのがフォト ニック結晶共振器である.

フォトニック結晶共振器の例を Fig. 1.4 に示す. 周期的な空孔を持つ Si 基板であるが, 空孔が埋まった箇所が中央に存在する. そこに,周期構造をした領域を伝搬できない光, つまりフォトニックバンドギャップの波長を持つ光が入射した場合,その空孔がない部分 に閉じ込められることとなるため,共振器として機能する. ここで示した共振器は2次元 フォトニック結晶と呼ばれており,平面方向はブラッグ反射によって光を閉じ込め,垂直 方向は全反射によって閉じ込める.

Fig. 1.4 **a**, Schematic of the base cavity structure having a triangular lattice of air rods with lattice constant $a (= 0.42 \,\mu\text{m})$. The thickness of the slab and the radius R of the air rods are $0.6a (0.25 \,\mu\text{m})$ and $0.29a (0.12 \,\mu\text{m})$, respectively. **b**, Starting cavity structure with three missing air rods in a line. **c**, Designed cavity structure created by displacing the air rods at both edges to obtain an ultrahigh Q/V value. [Y. Akahane, T. Asano, B.S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature **425**, 944–947 (2003). Reproduced with permission from Springer Nature.]

1.3 光周波数コムとマイクロコム

1.3.1 光周波数コムとは

光周波数コムとは,等間隔な周波数成分から構成される光信号である.「コム」という 名の通り,櫛状のスペクトルを持っており,それらが厳密に一定間隔に並ぶ.そのため, 光周波数コムを用いて光の周波数を正確に測定することができるので,「光の物差し」と も呼ばれている.光周波数コムの n 番目の周波数 f_n は,コム間隔に相当する繰り返し周 波数 f_r と,0番目のずれに相当するキャリアエンベロープオフセット周波数 f₀を用いて

$$f_n = f_0 + n f_r (1.3.1)$$

と表すことができる.フーリエ変換の関係を考慮すると,周波数域で等間隔な成分を持つ 信号は,Fig. 1.5 に示すように,時間域ではパルス列に対応する.そして,これらのパル スの間隔は 1/*f*_r に等しい.

Fig. 1.5 **a**, As the carrier wave at ω_c moves with the phase velocity while the envelope moves with a different group velocity, the carrier wave (blue) shifts by $\Delta \phi$ after each round trip with respect to the pulse envelope (red). **b**, This continuous shift results in a frequency offset $\omega_0 = \Delta \phi/T$, which prevents the comb from being comprised of exact harmonics of the pulse repetition frequency ω_r . [T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature **416**, 233–237 (2002). Reproduced with permission from Springer Nature.]

パルスを形成する電界の位相は、隣り合うパルスと比べると、 $\Delta \phi$ ずつずれている.この位相のずれは、キャリアエンベロープ位相と呼ばれており

$$f_0 = f_r \frac{\Delta \phi}{2\pi} \tag{1.3.2}$$

という関係で結ばれる.f₀ は自己参照法により計測することが可能である. m 番目の周波数の第 2 高調波と 2m 番目の周波数のビート信号 f_{beat} は

$$f_{\text{beat}} = 2f_m - f_{2m} = 2(f_0 + mf_r) - (f_0 + 2mf_r) = f_0$$
(1.3.3)

となるため、 f_{beat} を測定することにより f_0 を求めることができる.

1.3.2 マイクロコムとは

微小光共振器中で生成する光周波数コムをマイクロコムという. 高い Q 値と小さな モード体積を持つ微小光共振器は,光を長時間閉じ込めることができるため,光と物質の 相互作用を高められる.その結果,通常では観測できない四光波混合などの非線形光学効 果を低閾値で発生させることが可能となる.四光波混合とは,3次非線形効果の1つであ り,周波数整合条件および位相整合条件を満たす新たな周波数の光が生成する物理現象で ある.その中でも,異なる2つの周波数の光からさらに異なる2つの周波数を生成する場 合を非縮退過程といい,縮退した同じ周波数から異なる周波数を生成する場合を縮退過程 という.これらの効果が連鎖的に生じることで,新たな周波数が次々と生成され,周波数 軸上で等間隔に広がった光周波数コムとなる.その様子を Fig. 1.6 に示す.

Fig. 1.6 Schematic illustration of a generation of dissipative Kerr solitons from a continuous-wave. The comb is generated by a degenerate four-wave mixing (FWM) and a nondegenerate FWM.

フーリエ変換の関係から、マイクロコムが有する等間隔な周波数成分の位相が揃ってい る場合、時間領域ではパルスとして現れる.一般的にモード同期を実現するためには、音 響光学変調器や電気光学変調器などの変調器に外部から信号を加える能動的な方法と、強 度によって屈折率が変化するカー効果を用いたり、可飽和吸収体と呼ばれる物質を組み込 んだりする受動的な方法がある.しかし、微小光共振器へ外部から入力光を波長掃引しな がら入射することで、モード同期が実現できることが 2014 年に報告された^[7].微小共振 器内の光は、与えられたポンプパワーや周波数に対して複数の安定した解が存在するが、 入力するポンプ光を短波長側から長波長側へ波長を掃引することで、共振波長よりも長波 長側にポンプ波長が存在する状態となり、位相同期したソリトン解へアクセスすることが できる.この共振波長よりもポンプ波長が長波長側にある場合をレッドデチューニングと いい、モード同期を実現するための必須条件となる.反対に、共振波長よりもポンプ波長 が短波長側にある場合をブルーデチューニングという.

1.4 散逸性カーソリトン

1.4.1 散逸性カーソリトンとは

位相同期しパルス化したマイクロコムは,散逸性カーソリトンとも呼ばれる.ソリトン とは,孤立波の一種であり,常に同じ形を保ちながら極めて安定した波として進む.そし て,ソリトン同士が衝突した場合においても,それぞれが崩れることなく元の波形を維持 するという特徴がある.ソリトンについて初めて注目したのは,スコットランドの造船 技師であった Scott Russell である.彼は 1834 年,水面上で発生したソリトンを偶然観測 し,その特性を研究した.そして,1895 年には Korteweg と De Vries が,水深の浅い部 分を進む波を記述する KdV 方程式を導いた.KdV 方程式は

$$\frac{\partial u}{\partial t} + \alpha u \frac{\partial u}{\partial x} + \beta \frac{\partial^3 u}{\partial x^3} = 0$$
(1.4.1)

と表される.第2項は非線形項と呼ばれ,パルス幅を圧縮する効果がある一方,第3項は 分散項と呼ばれ,パルス幅を広げる効果がある.これらの力が釣り合うことによって,安 定した波となる.KdV 方程式は,1ソリトン解,2ソリトン解,Nソリトン解などを持 つが,例として1ソリトン解は定数 κ およびδを用いて

$$u = 2\kappa^2 \operatorname{sech}^2(\kappa x - 4\kappa^3 + \delta) \tag{1.4.2}$$

である. 光ファイバや導波路中を伝搬する光ソリトンは 1973 年に提案された¹⁰⁰. その伝 搬は,非線形シュレディンガー方程式をベースに記述することができる¹⁰¹. そしてマイク ロコムに対しては,非線形シュレディンガー方程式に境界条件を加えて拡張し,デチュー ニング項や外部入力項を加えた Lugaito-Lefever 方程式が用いられる. 発生したパルスは, 損失と利得,および分散と非線形性のバランスにより安定する.

1.4.2 応用例

周波数領域では等間隔なスペクトルを示し,時間領域では超短パルスとなるマイクロコ ムや散逸性カーソリトンは,非常に注目を集めている.特に,従来の光周波数コムとは異 なり,高い集積性や高繰り返し性を有しているため,様々な分野での応用が期待されて いる.

距離計測

LiDAR とは Light Detection and Ranging の頭文字であり,光による測距技術を表す. 特に近年,自動車の自動運転が注目を集めているが,高集積性を持つマイクロコムとも相 性が良い. LiDAR には,パルス波を出射し物体に反射して戻ってくる時間から測定する ToF (Time of Flight) 方式^[12] と,チャープした光を物体に照射し,その反射光の位相のず れから測定する FMDW (Frequency Modulated Continuous Wave) 方式がある^[13].

光通信

マイクロコムで生じる多くの周波数成分を,波長分割多重(WDM)通信の光源として 応用できる. 従来の WDM 通信では,多重化する波長数と同じ台数のレーザを必要とし たが,その信号を1台の励起用レーザと1つの微小光共振器だけで置き換えることがで きるため,消費電力やコストを一気に低減することが可能となる.特に時間領域で散逸性 カーソリトンが発生している状態であるソリトンコムは,位相雑音が少なく大容量通信に 適しており,多くの研究グループによって伝送実験が行われている^[14,15].また,さらなる 変換効率の向上を目指し,正常分散下において発生するダークパルスを伝送に用いた研究 も注目されている^[16].

Fig. 1.7 Artist's view of a future chip-scale terabit-per-second transmitter, leveraging a Kerr frequency comb source. DEMUX, de-multiplexer; VOA, variable optical attenuator; IQ-Mod, IQmodulator; MUX, multiplexer. [J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, "Coherent terabit communications with microresonator Kerr frequency combs," Nat. Photonics **8**, 375–380 (2014). Reproduced with permission from Springer Nature.]

アストロコム

マイクロコムは天体の分野でも用いられている.自らの光を発する天体を恒星,それを 周回する天体を惑星と呼ぶが,周回する惑星の影響を受けることにより,恒星も僅かなが ら揺れ動いている.そのため,ドップラーシフトの観測によって,惑星の存在を証明でき るのだが,その測定は容易ではない.このシフトを測定するためには,分光器の精密な較 正が必要となる.そこでマイクロコムを用いることが期待されている.なぜなら,従来の 光周波数コムでは FSR が数 10 MHz 程度と小さく,その間隔が狭くなり過ぎてしまうの だが,マイクロコムは,100 GHz を超える FSR も可能であるからである.高い安定性や ロバスト性が求められるため実用化は難しかったが,電力効率が良く,数 cm³ まで小型 化できるため,宇宙望遠鏡に搭載することも期待されている¹¹⁷.

1.4.3 シングルソリトン

マイクロコムは応用化が期待される一方で、その発生過程に関して課題があった. ポン プ波長を掃引し、レッドデチューニング状態にすることで、散逸性カーソリトン(以下、 ソリトン)が発生することは先述した通りである. しかし、その直前にカオスと呼ばれる 制御できない状態を経由することが知られており、発生するソリトンの数は、通常ランダ ムとなる. その結果、異なる間隔のソリトンが、共振器1周あたり複数個存在する「マル チソリトン」が生成する. これは、スペクトルの干渉が生じている状態であるため、応用 に適さない.

そこで, 共振器内に1つのソリトンのみが存在するシングルソリトンが注目を集めた. なぜなら, マルチソリトンとは異なり, 包絡線が sech² の関数で表される滑らかな形状と なるため, 高いコヒーレント性を持つからである. しかし, シングルソリトン状態を実現 することは, 容易ではなかった. 特に, 熱の影響がある場合, ポンプパワーやチューニン グ速度を変えたとしても, 単に波長掃引しただけではソリトン数が6個以上とマルチソリ トンにしかアクセスできないケースも報告されている^[18]. そこで, 決定論的にシングルソ リトンを生成する方法が数多く考案された. 以下に代表的な発生手法をまとめる.

バックワードチューニング

通常のソリトンの発生手法では、ポンプ光を短波長側から長波長側へ掃引する.その 際、発生したソリトンの個数に応じてパワーが階段状に変化する「ソリトンステップ」が 確認できる.つまり、掃引が進むに従って個数が徐々に減るのだが、ソリトンが消滅する 前に必ずしもシングルソリトン状態になるとは限らない.そこで,バックワードチューニ ングが考案された.ポンプ光を短波長側から長波長側へ掃引した後,今度は逆に長波長側 から短波長側へ掃引するのである.その結果,Fig. 1.8 に示すように,シングルソリトン 状態にアクセスできることが実証された.

Fig. 1.8 Experimental trace in the forward tuning (yellow curve) followed by one trace in the backward tuning (white curve) with successive switching of multiple-soliton states from N = 7 to N = 0 (no solitons). [H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, "Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators," Nat. Phys. **13**, 94–102 (2017). Reproduced with permission from Springer Nature.]

ポンプ光のパワーと周波数の調整

発生するソリトンの数がランダムになる原因は、カオスと呼ばれる状態を経由するから である.そこで、デチューニング量とポンプパワーから構成されるパラメータ空間におい て、カオス領域を避けてソリトン領域に至る経路を定め、デチューニング量とポンプパ ワーをその経路に沿って変化させることで、シングルソリトンの生成が可能であることが 示された¹⁹.

分散波

異常分散の共振器では、モード間相互作用によってチェレンコフ放射とも呼ばれる分散 波^[20]が生じることがある.その波とポンプ光との間にビードが生じ、ソリトンのダイナ ミクスへ大きな影響を与える.強いモード間相互作用が存在する場合、決定論的にシング ルソリトンが形成されることが、シミュレーションと実験の両方で示された^[21].

可飽和吸収体

可飽和吸収効体を用いて、シングルソリトンを生成する方法も提案されている.弱い光 を強く吸収する応答を示す単層グラフェンをファブリペロー型の共振器に加え、その共振 器の繰り返し周波数と等しい周波数でパルスポンプすることで、シングルソリトンが生じ ることが報告された^[22].

位相変調

共振器に入射する連続波を位相変調することでも、シングルソリトンを実現することが できる. 位相変調によって生じるサイドバンドがマイクロコムの発生の起点となり、その ままカオス状態を経由せず,直接ソリトンが発生することが理論的に示された^[23]. その後 実験でシミュレーションに合致する結果が得られている^[24].

1.4.4 パーフェクトソリトンクリスタル

前節で述べたシングルソリトンには避けて通れない問題がある.まず,ポンプパワーの 変換効率が数 % 程度と非常に低い.ソリトン 1 つあたりのパワーは,Q 値や分散などの パラメータによって決定するため,ソリトンの個数には依存しない.そのため,ポンプパ ワーがソリトン 1 つにしか変換されない場合,多数存在しているマルチソリトン状態と比 較すると,ポンプ光が有効に使われておらず,ほとんどのエネルギーが散逸した状態と なってしまう.マイクロコムの応用として,各コム線を WGM 通信でのキャリアとして 用いる例を挙げた.このような応用をするためには,それぞれの周波数成分が十分強い強 度を持っていることが必要となるが,それを満たせなくなってしまう.さらに,シングル ソリトンは熱的に不安定になりやすい.パワーが低いため,シングルソリトン状態に移行 する際,一気にデバイスが冷却されてしまう.もちろん温度制御をすることである程度対 策できるが,系の複雑化につながる.

そこで, Fig. 1.9 に示す, パーフェクトソリトンクリスタルが注目を集めている. これ は, 共振器内に存在できる最大数のソリトンが等間隔に並んだ状態であり, その発生して いるパルスの個数に応じて離散的なスペクトルを示す. このパーフェクトソリトンクリス タルの出力は,より大きな共振器で発生したシングルソリトンと同等であるとも考えられ るため,滑らかな包絡線を持つシングルソリトンの利点に加えて,高パワー,高繰り返し, 高効率などのシングルソリトンの欠点をカバーする特徴を持つこととなる. 実際, 共振器 内部に存在するソリトンの数を N とすると, 周波数スペクトルは繰り返し周波数の N 倍 の間隔となり、それぞれの周波数成分の強度はシングルソリトンの場合の N² 倍となる.

等間隔に並んだソリトンのうち,いくつかが欠けている場合を単にソリトンクリスタルと呼ぶが,これらが発見されたのは 2017 年のことであった^[25].当時はモード交差が発生の原因であると考えられ,その詳細なダイナミクスの解析は 2019 年に行われた^[26].

Fig. 1.9 An illustration of the PSC consisting of X pulses formed in the CW-driven nonlinear optical microcavity. [M. Karpov, M. H. P. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, "Dynamics of soliton crystals in optical microresonators," Nat. Phys. **15**, 1071–1077 (2019). Reproduced with permission from Springer Nature.]

しかし,モード交差の発生は設計に依存しており,製造誤差などのナノスケールの差に よってその強さなどが変化してしまうため,所望の性能になるよう制御することは困難で ある^[21].2つの共振器を用いた結合共振系を用いてモード間の相互作用を意図的に変化さ せることが可能であることも示されたが^[27],いずれにせよ超精密な設計が必要であり,さ らに一旦製造した後は設計を変更できないことが問題であった.そこで,別の発生メカニ ズムを用いた手法が盛んに研究されるようになった.それら先行研究を以下で紹介する.

非線形モード結合

モード交差によって局所的な分散を変化させ,共振器に入射するポンプパワーに変調を 生じさせる代わりに,第2高調波を発生させ非線形モード結合を引き起こすことでも,変 調波を誘起することができる.非線形カップリング係数や波数ベクトルのミスマッチが調 整された条件下で,第2高調波発生や和周波発生や差周波発生を通し,パーフェクトソリ トンクリスタルが生成できることが報告された^[28].

位相変調

シングルソリトンの発生と同様に、位相変調はパーフェクトソリトンクリスタルの発生 においても用いられる.位相変調により、共振器の繰り返し周波数と僅かに異なる間隔の 周波数成分を発生させた場合、その最小公倍数となる周波数が実効的なポンプとして作用 する.その間隔を共振器の繰り返し周波数で除した値が、1 周あたりのソリトンの個数と なり,パーフェクトソリトンクリスタルが形成されることが発見された^[29].特に,この方 法では変調周波数を変更することにより,パーフェクトソリトンクリスタルを構成するソ リトンの個数を任意の数に調整することが可能であるため,応用化に適している.

2波長ポンプ

変調波を発生させるために,波長の近い2台のレーザを用いる方法も考案されている. 波長差に対応する個数のソリトンが発生する.シングルソリトンから32個のパーフェク トソリトンクリスタルまでの,様々な個数の状態が,同一の実験セットアップを用いて実 現された^[30].その結果を Fig. 1.10 に示す.

Fig. 1.10 **a** Illustration of the experimental set-up, the wavelength of the pump light is fixed, while the wavelength of the control light is tunable for both SC switching and intracavity thermal balancing. EDFA erbium-doped fiber amplifier, FPC fiber polarization controller, Cir. circulator, PD photodiode, TEC thermoelectric cooler, OSC oscilloscope, ESA electric spectrum analyzer, OSA optical spectrum analyzer, Auto. autocorrelator. **b** Butterfly-packaged device with a 20.5-mm-diameter Chinese coin for comparison (upper panel). Microscope image of the high-index doped silica glass microring resonators with a diameter of 1.2 mm (lower panel). **c** Complete optical spectra for 1–32 synthesized SC with smooth sech² envelope (red dashed line). [Z. Lu, H.-J. Chen, W. Wang, L. Yao, Y. Wang, Y. Yu, B. E. Little, S. T. Chu, Q. Gong, W. Zhao, X. Yi, Y.-F. Xiao, and W. Zhang, "Synthesized soliton crystals," Nat. Commun. **12**, 1–7 (2021). https://doi.org/10.1038/s41467-021-23172-2 © 2021, The Author(s) (Licensed under CC BY 4.0) https://creativecommons.org/licenses/by/4.0/]

1.5 可飽和吸収体

1.5.1 可飽和吸収体とは

可飽和吸収体とは、入射する光の強度 I に応じて吸収量が非線形に変化する物質である. 強いパワーの光をほとんどそのまま透過させる一方、弱いパワーの光はあまり透過させない特性を示す. その吸収量 $\alpha(I)$ は、変調深さ α_0 、飽和強度 I_{sat} 、線形損失 α_{ns} を用いて

$$\alpha(I) = \frac{\alpha_0}{1 + \frac{I}{I_{\text{sat}}}} + \alpha_{\text{ns}}$$
(1.5.1)

となる. すなわちこれは,可飽和吸収体にある波形を入射すると,ピーク部分以外は強い 吸収を受けることになるため,パルス化が促進される.そして,一旦パルスが形成される と,より鋭いパルスへと変化させる効果を示す.

実際の可飽和吸収体には回復時間と呼ばれる時間があり、入射光に対して損失量が変化 するには時間がかかる.回復時間が短い可飽和吸収体はモード同期に用いられており、長 い可飽和吸収体は受動 Q スイッチに用いられる.

1.5.2 可飽和吸収体の種類

可飽和吸収の実現にあたり,システム全体で可飽和吸収特性を実現するように設計する 方法^[31] や,量子井戸と屈折率の高い物質と低い物質が交互に並ぶ構造を持つ可飽和吸収 ミラー(SESAM)を用いる方法^[32]などが研究されているが,ここでは単体で可飽和吸収 特性を示す物質について紹介する.

カーボンナノチューブ

2003 年には、カーボンナノチューブを可飽和吸収体として組み込むことにより、高い 繰り返し周波数で動作するレーザが実現された^[33].カーボンナノチューブとは、炭素で構 成される、直径数 nm の円筒状の物質である.複数の層が同軸で重なる場合を多層カーボ ンナノチューブといい、1 層のみである場合を単層カーボンナノチューブという.

カーボンナノチューブには、金属にも半導体にもなり得るという特徴がある^[34]. Fig. 1.11 に示すように、カーボンナノチューブの巻かれ方はカイラルベクトル *C* で定義 される. グラフェンシートの基本単位格子ベクトル *a*₁ と *a*₂, そして整数 *n* と *m* を用い

(1.5.2)

と表される.

Fig. 1.11 (a) Chirality of SWCNTs, where a_1 and a_2 are the basic vectors of graphene and C is the chiral vector of a SWCNT, we can obtain different SWCNTs (b–d) depending on the rolling direction and the length of the vector. The chiral angle θ and the diameter D of the SWCNT as functions of the chiral indexes (n, m) are also shown. Reprinted with permission from [L. Qiu and F. Ding, "Understanding Single-Walled Carbon Nanotube Growth for Chirality Controllable Synthesis," Accounts Mater. Res. 2, 828–841 (2021)]. Copyright 2021 American Chemical Society.

n と m の組み合わせ (n, m) はカイラル指数と呼ばれ, カーボンナノチューブの性質を 決定する. カーボンナノチューブの直径 D とカイラル角度 θ はそれぞれ

$$D = \frac{|a_1|}{\pi} \sqrt{n^2 + m^2 + mn}$$
(1.5.3)

$$\theta = \arccos \frac{2n+m}{2\sqrt{n^2+m^2+mn}} \tag{1.5.4}$$

となる.なお、炭素の原子間距離 a_{c-c} は 1.42 Å であるので、

$$|a_1| = \sqrt{3}a_{c-c} = 2.46 \,\text{\AA} \tag{1.5.5}$$

である.

また,カイラル指数が (n,0) の場合をジグザグ型,(n,n) の場合をアームチェア型,そ れ以外をカイラル型と呼ぶ.そして,|n-m| が3の倍数の場合,金属的な性質となり, |n-m| が3の倍数ではない場合,半導体的な性質となるため,バンド構造や回復時間な どの特徴も,カイラル指数に応じて変化する.

2 次元材料

2次原材料も可飽和吸収特性を示す.まず,先述したカーボンナノチューブと同様にナ ノカーボン材料の1種である,グラフェンを取り上げる.

グラフェンはゼロギャップ半導体であり,特異的な性質を持つ. エネルギーと波数には 線形な分散関係があり,伝導帯と価電子帯はディラックポイントで交差するため,質量を 持たない電子として振る舞う. ゲート電圧によってフェルミエネルギーの位置を変えるこ とが可能であり, Fig. 1.12 に示すようにマイクロコムの制御に用いた研究も報告されてい る^[35]. グラフェンの可飽和吸収体に関する特性は,以下の通りである^[36]. 回復時間 τ が 200 fs 程度と超高速であり,変調深さ α_0 は数層で 60 % 以上であると比較的大きい. ま た, 2.3 % の吸収が,波長に依らず存在する.

Fig. 1.12 **a** Schematic architecture of the GMR, with the silicon nitride indicated in grey. A graphene/ion-gel heterostructure is incorporated in the nitride microresonator. **b** Electric-field distribution of the graphene–nitride heterogeneous waveguide, with a Si₃N₄ cross-section of $1.2 \times 0.8 \ \mu m^2$. The distance between the Si₃N₄ waveguide and the graphene layer is 100 nm. The graphene and the top-gate probe are separated by $1 \ \mu m$ with the interlayer ion-gel capacitor. In this structure, transverse electric (TE) mode is applied. [B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, "Gate-tunable frequency combs in graphene-nitride microresonators," Nature **558**, 410–414 (2018). Reproduced with permission from Springer Nature.]

グラフェン以外の2次原材料としては,遷移金属ダイカルコゲナイド(TMD)がある. TMD は化学式 MX₂ で表される物質であり,M は W, Mo, Re などの遷移金属原子,X は S, Se, Te などのカルコゲン原子であり,1層の M 原子が2層の X 原子で挟まれた構造をする^[36].また黒リン (BP) も,可飽和吸収体として注目を集めている.TMD は一般的にバンドギャップが1~2eV であり,中赤外波長での応用に限界があったのだが,BP は層数に応じてバンドギャップが0.3eV から2eV となるため,広帯域で活用できる^[37].

1.5.3 モード同期レーザへの応用

可飽和吸収体は利得媒質と組み合わせることで,モード同期レーザを実現することがで きる.利得媒質とは,上準位原子数が下準位原子数よりも多い状態である反転分布状態を 形成し,誘導放出によって光を増幅する媒質である.そのような媒質は数多く存在する が, CO₂ やエキシマを利用する気体レーザ,色素を用いた液体レーザ, Ti サファイアレー ザや YAG レーザなどの固体レーザなどに分類される.

モード同期レーザの性能指数として、ピークパワーやパルス幅など様々な指標がある が、本節では繰り返し周波数に着目する.高繰り返しレーザを用いることで、より微細な 加工や、より高速な通信などへの応用が可能となるため、多くの注目を集めている.例え ばこれまでに、半導体レーザで励起した固体レーザを用いて 100 GHz を超える繰り返し 周波数が実現された^[38].しかしながら、このような固体レーザは自由空間構成であること が原因で、長期の安定性に欠けるため、近年では小型で軽量ながらも高信頼性である代わ りにファイバレーザの研究が多くなされている^[39].ファイバレーザとは希土類元素を添 加した光ファイバを媒質としたレーザであり、一般に固体レーザに分類される.ファイバ レーザの繰り返し周波数を上げるためには、共振器長を短くする必要があるが、その場合 十分な利得を得ることができないことが課題であった.利得を増やすために添加する希土 類元素の濃度を増やすだけでは、濃度消光が生じ別の原子へエネルギーが受け渡されてし まい、所望の周波数以外の光が生成してしまうのである.しかしながら、近年は 10 GHz を超える高繰り返しがファイバレーザによって実現されている^[40,41].

1.6 本研究の目的

上述したように、マイクロコムは光通信や距離計測などへの応用化がなされており、更 なる性能向上のためには、高効率化、高パワー化、高繰り返し化が必須である.そこで、 研究分野の動向としては、それらを可能にする特殊なマイクロコムの状態であるパーフェ クトソリトンクリスタルに注目が集まっている.これまで、モード交差、位相変調などに よって実現する方法が報告されているが、任意の分散波を発生させるために精密な共振器 の設計や,バックグラウンド光を変調するための変調器や別のレーザ光源が必要であり, 依然として課題がある.そこで本研究では,可飽和吸収体をパーフェクトソリトンクリス タル発生に用いることを提案する.発生メカニズムのアイデアを Fig. 1.13 に示す.ソリ トンの発生時にはチューリングロールと呼ばれる周期的な波形が発生し,通常の場合,そ こからカオスな状態へと遷移する.しかし,可飽和吸収体が存在する場合,可飽和吸収効 果によりカオスな成分が湧き上がるのを防ぎ,チューリングロールを起点に等間隔なソリ トン形成ができると期待できる.

Fig. 1.13 Proposed mechanism. Normally, after the Turing rolls, the waveform becomes chaotic due to an increasing number of sub-pulses. However, the saturable absorption prevents the system from entering a chaotic state. As a result, we expect to be able to generate a perfect soliton crystal.

この方式は、これまでに考案されていない新しいメカニズムであり、単一の微小光共振 器を用いて、従来のマルチソリトン発生と同様の方式で、パーフェクトソリトンクリスタ ルを生成できる点に強みがある.さらに、チューリングロールを起点としてパーフェクト ソリトンクリスタルを発生させるため、パーフェクトソリトンクリスタルを構成するソリ トンの数は、分散やパワーを調整し、チューリングロールの数をコントロールすることで 変更できると期待できる.本研究では、数値解析によってこの新たな方式の発生メカニズ ムを明らかにし、実験で実現することを目的とした.

第2部

理論

2.1 共振器の特性

2.1.1 *Q*值

微小光共振器は,高い光の閉じ込め作用を示すが,僅かながら損失がある.本節では, 微小光共振器の損失に関する理論^[42]をまとめる.

話を単純化するため、ファブリペロー型の微小光共振器を想定し、議論を進める.内部の屈折率を1、ミラー間隔をL、波長を λ、整数 m とすると、光の干渉の結果、

$$m\lambda = 2L \tag{2.1.1}$$

を満たす波が,定常波として存在する.それぞれの共振波長は縦モードと呼ばれ,共振周 波数間隔(FSR)は光速*c*を用いて

$$f_{\rm FSR} = \frac{c}{2L} \tag{2.1.2}$$

となる.理想的には、共振条件を満たす周波数のみが共振器内に存在することになるが、 実際には共振器には損失があるため、存在できる周波数は幅を持つ.吸収や散乱などが原 因で、rの割合で1往復ごとに減衰し、位相 φ は周波数fを用いて

$$\varphi = 2L\left(\frac{2\pi}{\lambda}\right) = \frac{4\pi fL}{c} \tag{2.1.3}$$

と変化する. そのため, *i* 往復した際の波動 U_i は $h = re^{-j\varphi}$ を用いて

$$U_i = r e^{-j\varphi} U_{i-1} = h U_{i-1} \tag{2.1.4}$$

となる. これらの波を重ね合わせを考えると

$$U = U_0 + U_1 + U_2 + \cdots$$
 (2.1.5)

$$= U_0(1+h+h^2+\cdots)$$
 (2.1.6)

$$\simeq \frac{U_0}{1-h} \tag{2.1.7}$$

$$I = \frac{|U_0|^2}{|1 - h|^2} \tag{2.1.8}$$

$$=\frac{|U_0|^2}{(1-r)^2+4r\sin^2(\varphi/2)}$$
(2.1.9)

$$= \frac{I_{\rm max}}{1 + (2\mathcal{F}/\pi)^2 \sin^2(\pi f/f_{\rm FSR})}$$
(2.1.10)

となる.ただし,以下で定義される共振の鋭さを表すフィネス *F* および最大強度 *I*_{max} を 用いた.

$$\mathcal{F} = \frac{\pi\sqrt{r}}{1-r} \tag{2.1.11}$$

$$I_{\max} = \frac{|U_0|^2}{(1-r)^2} \tag{2.1.12}$$

さらに、位相変化が小さいとして $\sin(\pi f/f_{FSR}) = \pi f/f_{FSR}$ の近似を行うと、I は $f = f_{FSR}/2F$ の場合に $I_{max}/2$ となるので、半値全幅 (FWHM) は

$$\Delta f = \frac{f_{\rm FSR}}{\mathcal{F}} = \frac{c(1-r)}{2\pi L\sqrt{r}} \tag{2.1.13}$$

となる.

共振器内での減衰が指数関数的に減少すると仮定すると、単位長さ当たりの減衰係数 α_rを用いて

$$r = \exp(-2\alpha_{\rm r}L) \tag{2.1.14}$$

となる. なお、単位時間当たりの減衰係数 α_t とは

$$\alpha_{\rm t} = c\alpha_{\rm r} \tag{2.1.15}$$

の関係が成立する.

共振器の性能を評価する上で Q 値と呼ばれる指標が一般的に用いられており,角周波数 ω ,共振器に蓄積されたエネルギー E_{cav} ,単位時間当たりに失うエネルギー P_{loss} を用いて

$$Q = \omega \frac{E_{\text{cav}}}{P_{\text{loss}}} \tag{2.1.16}$$

と定義される. また光子寿命 $\tau_{\rm p}$ は、共振器内部のエネルギーが 1/e となる時間であり

$$\tau_p = \frac{1}{2\alpha_{\rm t}} \tag{2.1.17}$$

となるため, Q 値は

$$Q = \omega \tau_{\rm p} \tag{2.1.18}$$

と表すことも可能である.

Q 値を決定する具体的な減衰要因としては、材料吸収、放射損失、表面散乱、結合損失 などが挙げられる.そのため、全体の Q_{total} はそれらの影響を分解して

$$\frac{1}{Q_{\text{total}}} = \frac{1}{Q_{\text{absorption}}} + \frac{1}{Q_{\text{radiation}}} + \frac{1}{Q_{\text{surface}}} + \frac{1}{Q_{\text{couple}}}$$
(2.1.19)

と決まる.

2.1.2 分散

波長に応じて伝搬速度が異なることを分散と呼ぶ.分散媒質に様々な波長がモード同期 したパルスを入射した場合,各波長成分が *c*/*n*(ω)と屈折率 *n* に依存した異なる速度で進 むため,パルスの幅が広がる現象が観測される.

マイクロコムでは,共振器の分散は Fig. 2.1 に示すように共振波長に影響を与える.分散が0の場合,各モードは等間隔に並ぶが,分散が存在する場合,以下のように表される.

$$\omega_{\mu} = \omega_0 + D_1 \mu + \frac{1}{2} D_2 \mu^2 + \frac{1}{6} D_3 \mu^3 + \cdots$$
 (2.1.20)

ここで、 ω_0 は任意の共振角周波数、 ω_μ は ω_0 から数えて μ 番目のモードを表わしている. そして、 $D_1/2\pi$ は分散がない場合の FSR、 $D_2/2\pi$ は 2 次分散、 $D_3/2\pi$ は 3 次分散である. 3 次分散以降は高次の分散と呼ばれ、2 次分散と比較すると与える影響は少ないが、高次分散が与える影響も近年研究されている^[43].

Fig. 2.1 Schematic illustration showing that resonance frequencies are not equidistant.

伝搬定数 β を中心周波数 ω0 のまわりでテイラー展開すると

$$\beta(\omega) = \beta_0 + \beta_1(\omega - \omega_0) + \frac{1}{2}\beta_2(\omega - \omega_0)^2 + \frac{1}{6}\beta_3(\omega - \omega_0)^3 + \cdots$$
 (2.1.21)

$$\beta_m = \left. \frac{d^m \beta}{d\omega^m} \right|_{\omega = \omega_0} \qquad (m = 0, 1, 2, ...) \tag{2.1.22}$$

となり、特に β_1 と β_2 は

$$\beta_1 = \frac{1}{c} \left(n + \omega \frac{dn}{d\omega} \right) \tag{2.1.23}$$

$$\beta_2 = \frac{1}{c} \left(2\frac{dn}{d\omega} + \omega \frac{d^2n}{d\omega^2} \right)$$
(2.1.24)

である. β_1 は単位長さあたりの伝搬遅延時間で群遅延時間を表しており、群速度 v_g の逆数と等しい. β_2 は群速度の分散であり、パルス幅を広げる効果を示す.先述した D_μ とは

$$\beta_2 = -\frac{nD_2}{cD_1^2} \tag{2.1.25}$$

という関係で結ばれる. β2 が正の場合を正常分散といい, 負の場合を異常分散という.

分散は材料に起因する分散と、構造に起因する分散に分類できるため、それぞれの分散 を計算し、和を取ることで正味の分散を計算することができる.まず、屈折率が変化する ことで生じる、材料分散について説明する.例として、SiO₂の共振器を考える.屈折率 *n*と波長 λ の関係は、セルマイヤーの分散式によって

$$n^{2} - 1 = \frac{0.6961663\lambda^{2}}{\lambda^{2} - (0.0684043)^{2}} + \frac{0.4079426\lambda^{2}}{\lambda^{2} - (0.1162414)^{2}} + \frac{0.8974794\lambda^{2}}{\lambda^{2} - (9.896161)^{2}}$$
(2.1.26)

と導かれる^[44]. Fig. 2.2 にこの関係を図示した. この結果から, 波長が 1 nm 異なる光が 1 km 伝搬されるのに要する時間の差を表す分散定数 D が

$$D = -\frac{\lambda}{c} \frac{d^2 n}{d\lambda^2} \tag{2.1.27}$$

であるため、 β_2 は

$$\beta_2 = -\frac{\lambda^2 D}{2\pi c} \tag{2.1.28}$$

と求まる. この式より, β_2 と D は符号が常に反対となることが分かる.

次に,導波路の構造により決定される,構造分散についてである.これは,有限要素法 (FEM) などによって計算した *m* 番目の共振周波数 *f_m* を用いて以下のように計算できる^[45].

$$\beta_2 = -\frac{1}{4\pi^2 R \Delta f_m^3} \Delta(\Delta f_m) \tag{2.1.29}$$

ただし、 Δf_m と $\Delta(\Delta f_m)$ はそれぞれ

$$\Delta f_m = \frac{f_{m+1} - f_{m-1}}{2} \tag{2.1.30}$$

$$\Delta(\Delta f_m) = f_{m+1} - 2f_m + f_{m-1} \tag{2.1.31}$$

である.

Fig. 2.2 Refractive index of fused silica calculated from Sellmeier equation.

2.1.3 非線形光学効果

誘電体に電圧がかかると分極が生じる.その大きさは、電界 E に比例し、

$$P = \epsilon_0 \chi E \tag{2.1.32}$$

と表される.ここで、 ϵ_0 は真空での誘電率、 χ は媒質の電気感受率である.ただし、より 厳密には、高次な項を用いて記述される.

$$P = \epsilon_0(\chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \cdots)$$
(2.1.33)

 $\chi^{(2)}$ と $\chi^{(3)}$ はそれぞれ 2 次と 3 次の電気感受率と呼ばれ,値としては小さいため,通常 無視できる.しかし,高強度の光を入射する場合などには,その影響を考慮する必要が ある.

本研究で扱う SiO₂ を始めとする反転対称性を持つ媒質は,カー媒質と呼ばれ,2次の 非線形性は現れない.最も顕著な非線形項は3次の非線形項である.そこで

$$P_{NL} = \epsilon_0 \chi^{(3)} E^3 \tag{2.1.34}$$

に着目する.まず単純な例として、 $E_0 \cos(\omega t)$ の電界を持つ光を考える.この光に対して P_{NL} は

$$P_{NL} = \frac{1}{4} \epsilon_0 \chi^{(3)} E_0^3 \cos(3\omega t) + \frac{3}{4} \epsilon_0 \chi^{(3)} E_0^3 \cos(\omega t)$$
(2.1.35)

となる.第1項は周波数 3 ω の成分の光が新たに発生することを意味しており、この現象 を第3高調波発生と呼ぶ.第2項は周波数 ω への影響を表しており、屈折率 n に変化を 与える.光強度を I、非線形性を無視した場合の屈折率を n_0 とすると

$$n = n_0 + n_2 I \tag{2.1.36}$$

となる. n2 は非線形屈折率であり

$$n_2 = \frac{3\chi^{(3)}}{4n^2\epsilon_0 c} \tag{2.1.37}$$

である.この屈折率変化をカー効果という.

次に、角周波数 $\omega_1, \omega_2, \omega_3$ の光が存在する場合を考える. この場合の電界 E は

$$E = \operatorname{Re}\{E_{1}\exp(j\omega_{1}t)\} + \operatorname{Re}\{E_{2}\exp(j\omega_{2}t)\} + \operatorname{Re}\{E_{3}\exp(j\omega_{3}t)\}$$
(2.1.38)

となる. E^3 を計算すると分極 P_{NL} は ω_1 , ω_2 , ω_3 の和や差の様々な周波数成分を持つこ とが分かる. ここで

$$P_{\rm NL} = \sum_{n} P(\omega_n) \exp(j\omega_n t)$$
(2.1.39)

と置く. すると角周波数が 3ω1 である項は

$$P(3\omega_1) = \epsilon_0 \chi^{(3)} E_1^3 \exp j 3\omega_1 t \tag{2.1.40}$$

であり、第3高調波発生に対応する.そして、ω1を持つ項は

$$P(\omega_1) = \epsilon_0 \chi^{(3)} (3|E_1|^2 + 6|E_2|^2 + 6|E_3|^2) E_1 \exp j\omega_1 t$$
(2.1.41)

であり、カー効果を表す. 第1項は ω_1 自身の電界の強さに起因する項であるため、自己 位相変調(SPM)という. 一方で第2項と第3項は、 ω_2 、 ω_3 の電界の強さに起因する項 であるため、相互位相変調(XPM)という. そして

$$P(\omega_1 + \omega_2 - \omega_3) = \epsilon_0 \chi^{(3)} 6E_1 E_2 E_3^* \exp(j(\omega_1 + \omega_2 - \omega_3)t)$$
(2.1.42)

 $P(2\omega_1 - \omega_2) = \epsilon_0 \chi^{(3)} 3E_1^2 E_2^* \exp(j(2\omega_1 - \omega_2)t)$ (2.1.43)

などの項は四光波混合を表す. $\omega_1, \omega_2, \omega_3, \omega_1 + \omega_2 - \omega_3$ のように、全て異なる周波数 が関わる場合を、非縮退四光波混合という.一方で、 $\omega_1, \omega_2, 2\omega_1 - \omega_2$ のように、ある 周波数が縮退している場合を縮退四光波混合と言う.ただし、四光波混合が生じるために は位相整合を満たす必要がある.

2.2 導波路との結合

本章では,結合モード理論を用いて Fig. 2.3 に示す微小光共振器と導波路との結合に関する理論をまとめる.

Fig. 2.3 Schematic illustration of cavity and waveguide. In the middle of the waveguide, light is passed in and out of the resonator.

微小光共振器と導波路から構成されるシステムは,結合モード方程式により,

$$\frac{dA}{dt} = j(\omega_0 - \omega)A - \left(\frac{\gamma_{\text{int}}}{2} + \frac{\gamma_{\text{ext}}}{2}\right)A + \kappa S_{\text{in}}$$
(2.2.1)

と表される.ただし、Aはモード振幅、 ω は入力周波数、 ω_0 は共振周波数、 γ_{int} は共振器 固有の損失、 γ_{ext} は共振器と導波路との結合損失、 κ は結合係数 κ 、 S_{in} は導波路からの 入力光である.損失を表す係数は、光子寿命を用いて記述も可能であり、

$$\gamma_{\rm int} = \frac{1}{\tau_{\rm int}} \tag{2.2.2}$$

$$\gamma_{\rm ext} = \frac{1}{\tau_{\rm ext}} \tag{2.2.3}$$

である.定常状態を仮定し,結合モード方程式の左辺を0とすることで,Aについて解く ことができる.

$$A = \frac{\kappa S_{\rm in}}{j(\omega_0 - \omega) - \frac{1}{2}(\gamma_{\rm int} + \gamma_{\rm ext})}$$
(2.2.4)

これを用いて、入力光 $S_{\rm in}$ と出力光 $S_{\rm out}$ の関係を考える. 天下り的ではあるが、解の形が

$$S_{\rm out} = pS_{\rm in} + qA \tag{2.2.5}$$

であると仮定する. 共振器の内部パワーの保存則より

$$|S_{\rm in}|^2 - |S_{\rm out}|^2 = \frac{d|A|^2}{dt} + \gamma_{\rm int}|A|^2$$
(2.2.6)

が成立するので、まず、この式の左辺を次のように整理する.

(左辺) =
$$|S_{\rm in}|^2 - |pS_{\rm in} + qA|^2$$
 (2.2.7)

$$= (1 - p^2)|S_{\rm in}|^2 - q^2|A|^2 - pqS_{\rm in}^*A - pqS_{\rm in}A^*$$
(2.2.8)

続いて右辺は

$$\frac{d|A|^2}{dt} = -(\gamma_{\rm int} + \gamma_{\rm ext})|A|^2 + \kappa(S_{\rm in}^*A + S_{\rm in}A^*)$$
(2.2.9)

であることに注意して,

$$(\overline{aU}) = -(\gamma_{\rm int} + \gamma_{\rm ext})|A|^2 + \kappa(S_{\rm in}^*A + S_{\rm in}A^*) + \gamma_{\rm int}|A|^2$$
(2.2.10)

$$= -\gamma_{\text{ext}}|A|^2 + \kappa S_{\text{in}}^* A + \kappa S_{\text{in}} A^*$$
(2.2.11)

となる. 左辺と右辺が恒等式として成立するためには,

$$1 - p^2 = 0 \tag{2.2.12}$$

$$q^2 = \gamma_{\text{ext}} \tag{2.2.13}$$

$$pq = -\kappa \tag{2.2.14}$$

であることが必要である. すなわち,

$$p = -1$$
 (2.2.15)

$$q = \kappa = \sqrt{\gamma_{\text{ext}}} \tag{2.2.16}$$

となるため,

$$S_{\rm out} = -S_{\rm in} + \sqrt{\gamma_{\rm ext}}A \tag{2.2.17}$$

となる. 入力光 S_{in} と出力光 S_{out} の関係から, 透過率 T を計算すると

$$T = \left| \frac{S_{\text{out}}}{S_{\text{in}}} \right|^2 = \frac{(\omega_0 - \omega)^2 + \frac{1}{4}(\gamma_{\text{int}} - \gamma_{\text{ext}})^2}{(\omega_0 - \omega)^2 + \frac{1}{4}(\gamma_{\text{int}} + \gamma_{\text{ext}})^2}$$
(2.2.18)

となる.

Fig. 2.4(a) に $\omega_0 = \omega$ を満たす場合の透過率 T を $\gamma_{\text{ext}}/\gamma_{\text{int}}$ を横軸として図示した. $\gamma_{\text{int}} = \gamma_{\text{ext}}$, すなわち $\gamma_{\text{ext}}/\gamma_{\text{int}} = 1$ の場合, T の最小値は 0 となり, このような条件をク リティカルカップリングと呼ぶ. Fig. 2.4(b) に, クリティカルカップリング状態で波長を 変化させた場合の透過率を示した. クリティカルカップリング以外の条件では, 共振周波 数においても T の最小値は 0 にならない. γ_{int} が γ_{ext} よりも大きい場合をアンダーカッ プリングといい, γ_{int} が γ_{ext} よりも小さい場合をオーバーカップリングという.

Fig. 2.4 (a) Minimum transmittance as a function of $\gamma_{ext}/\gamma_{int}$. Dashed line represents the critical coupling condition. (b) Transmittance in the critical coupling condition.

2.3 マイクロコムの数値解析

2.3.1 Lugiato-Lefever 方程式

一般的にマイクロコムの解析には,Lugiato-Lefever 方程式(LLE)^[46]が用いられる.こ れは非線形シュレディンガー方程式(NLSE)

$$\frac{\partial}{\partial z}E = -\frac{\alpha}{2}E - \frac{i}{2}\beta_2 \frac{\partial^2}{\partial \tau^2}E + i\gamma |E|^2 E \qquad (2.3.1)$$

にデチューニング項と外部入力項を追加した形となる. E は時間 τ と位置 z の関数で表 される包絡線振幅, α は損失, β_2 は群速度分散, γ は非線形光学係数である. この式は光 ファイバー中の光の伝搬をシミュレーションする際に用いられる式であり,微小光共振器 に対して適用するためには式を修正する必要がある.

そこで、微小光共振器を伝搬している n 周目の電界を E_n と定義する. すると E_{n-1} との関係は共振器 1 周の長さを L を用いて

$$E_n = E_{n-1} + \frac{dE}{dz}L\tag{2.3.2}$$

となる. さらに, 外部からの入力光 $E_{\rm in}$ を考慮すると結合係数 θ , 位相シフト量 δ を用いて

$$E_n = (E_{n-1} + \frac{dE}{dz}L)\sqrt{1-\theta}\exp(-i\delta) + \sqrt{\theta}E_{\rm in}$$
(2.3.3)

となる. さらに

$$\sqrt{1-\theta} = 1 - \frac{1}{2}\theta \tag{2.3.4}$$

$$\exp(-i\delta) = 1 - i\delta \tag{2.3.5}$$

の近似を適用することで,

$$E_n = (E_{n-1} + \frac{dE}{dz}L)(1 - \frac{1}{2}\theta)(1 - i\delta) + \sqrt{\theta}E_{\rm in}$$
(2.3.6)

を得る.この式は非常に小さい値となる項は無視することで,以下のようにさらに簡単な 式に整理することができる.

$$E_n = E_{n-1}\left(1 - \frac{1}{2}\theta - i\delta\right) + \frac{dE}{dz}L + \sqrt{\theta}E_{\rm in}$$
(2.3.7)

そして (2.3.1) 式を代入することで

$$E_n - E_{n-1} = \left(-\frac{\alpha L + \theta}{2} - i\delta - \frac{i}{2}\beta_2 L \frac{\partial^2}{\partial\tau^2} + iL\gamma |E|^2\right) E_{n-1} + \sqrt{\theta} E_{\text{in}}$$
(2.3.8)

を得る. 最後にスロータイム *t* および共振器を 1 周するのに要する時間である *t*_R を用い て変形することで,一般に LLE と呼ばれる

$$t_{\rm R}\frac{\partial}{\partial t}E = \left(-\frac{\alpha_{\rm tot}}{2} - i\delta - \frac{iL}{2}\beta_2\frac{\partial^2}{\partial\tau^2} + iL\gamma|E|^2\right)E + \sqrt{\theta}E_{\rm in}$$
(2.3.9)

を導くことができる.右辺は第一項から順に,損失,デチューニング,分散,非線形光学 効果,外部からの入力光を意味する.

Fig. 2.5 に,先行研究で行われたソリトンの数値解析結果を示す. LLE を解くことで共振器内部のパワーや時間波形,周波数スペクトルの変化をシミュレーションすることが可

能であり,複雑な変化をすることが分かる.連続波を入射して,まず初めに発生する波形 は周期的なチューリングロールである.しかしその後,カオス状態となり,波形は激しく 乱れる.さらに波長を掃引すると,ポンプ波長が共振器の共振波長を超え,マルチソリト ンが発生する.その後,掃引に伴いソリトンの個数は減り,階段状にパワーが変化するソ リトンステップが発生する.

Fig. 2.5 **a**, Average intracavity power (blue) during a simulated laser scan (101 simulated modes) over a resonance in a MgF_2 resonator. The step features are well reproduced. The orange lines trace out all possible evolutions of the system during the scan. The dashed lines show an analytical description of the steps. The green area corresponds to the area in which solitons can exist, the yellow area allows for breather solitons with a time-variable envelope; solitons cannot exist in the red area. **b,c**, Optical spectra and intracavity powers for the different positions I–XI in the laser scan. [T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, "Temporal solitons in optical microresonators," Nat. Photonics **8**, 145–152 (2014). Reproduced with permission from Springer Nature.]

2.3.2 定常解析

定常状態を仮定した LLE の解析は,マイクロコムで生じる複雑な現象を理解するために,多くの研究がなされてきた^[47-49].それら先行研究と同様に,まず (2.3.9) 式の変数を以下のように書き換える.

$$E = \sqrt{\frac{\alpha_{\text{tot}}}{2\gamma L}}u \tag{2.3.10}$$

$$t = \frac{2t_{\rm r}}{\alpha_{\rm tot}t'} \tag{2.3.11}$$
$$\delta = \frac{\Delta \alpha_{\rm tot}}{2} \tag{2.3.12}$$

$$E_{\rm in} = \sqrt{\frac{\alpha_{\rm tot}^3}{8\gamma L\theta}}S \tag{2.3.13}$$

$$\tau = \sqrt{\frac{|\beta_2|L}{\alpha_{\rm tot}\tau'}} \tag{2.3.14}$$

すると (2.3.9) 式は

$$\frac{\partial u}{\partial t'} = \left(-1 - i\Delta + i\frac{\partial}{\partial \tau'^2} + i|u|^2\right)u + S$$
(2.3.15)

と無次元化できる.ただし、 $\beta_2 < 0$ すなわち異常分散を想定した.

定常状態では微分項が 0 となる.そのため, (2.3.15) 式の左辺と右辺第三項を 0 とし, さらに $|S|^2 = X$, $|u|^2 = Y$ とすることで,

$$X = Y(1 + (\Delta - Y)^2)$$
(2.3.16)

という関係があることが分かる.この式の解の個数は, Y や △ の値によって変化する. その特徴を調べるために

$$G(\Delta, Y) = Y(1 + (\Delta - Y)^2)$$
(2.3.17)

を考える. $G(\Delta, Y)$ は (2.3.16) 式の右辺であるので、この 3 次関数と (2.3.16) の左辺を図 示した際の交点が、求める定常解となる. $G(\Delta, Y)$ の導関数は

$$\frac{\partial G}{\partial Y} = 3Y^2 - 4\Delta Y + \Delta^2 + 1 \tag{2.3.18}$$

となるため、この2次関数の判別式

$$D = 4(\Delta^2 - 3) \tag{2.3.19}$$

の正負によって、3 次関数 G の概形が変化することが分かる. すなわち $|\Delta| < \sqrt{3}$ の場合 には、解の個数が 1 つしか存在しない. しかし、 $|\Delta| \ge \sqrt{3}$ の場合、

$$Y = \frac{2\Delta \pm \sqrt{\Delta^2 - 3}}{3}$$
(2.3.20)

が境界となり,

$$X_{\min} = \frac{2\Delta - \sqrt{\alpha^2 - 3}}{3} \left[1 + \left(\frac{\sqrt{\Delta^2 - 3} + \Delta}{3} \right)^2 \right]$$
(2.3.21)

$$X_{\max} = \frac{2\Delta + \sqrt{\alpha^2 - 3}}{3} \left[1 + \left(\frac{\sqrt{\Delta^2 - 3} - \Delta}{3} \right)^2 \right]$$
(2.3.22)

を用いて

$$X_{\min} \le X \le X_{\max} \tag{2.3.23}$$

において2つまたは3つの解を持つ.

これらの解の安定性は,解に僅かな摂動を与えた際の挙動を調べることで評価できる. そのためには,方程式を線形化し,その固有値を調べればよい.

(2.3.15) 式の左辺にある,スロータイム t に関連する微分項のみを0とすることで得られる

$$0 = \left(-1 - i\Delta + i\frac{\partial}{\partial\tau'^2} + i|u|^2\right)u + S$$
(2.3.24)

を考える. $u = u_r + iu_i$ を (2.3.24) 式に代入し、右辺の虚数部分と実数部分がそれぞれ 0 になることから

$$\frac{\partial^2 u_{\rm r}}{\partial \tau'^2} = -(u_{\rm r}^2 + u_{\rm i}^2)u_{\rm r} + \Delta u_{\rm r} + u_{\rm i}$$
(2.3.25)

$$\frac{\partial^2 u_{\rm i}}{\partial \tau'^2} = -(u_{\rm r}^2 + u_{\rm i}^2)u_{\rm r} + \Delta u_{\rm i} - u_{\rm r} + F$$
(2.3.26)

という関係を得る. そして

$$v_{\rm r} = \frac{\partial u_{\rm r}}{\partial \tau'} \tag{2.3.27}$$

$$v_{\rm i} = \frac{\partial u_{\rm i}}{\partial \tau'} \tag{2.3.28}$$

を満たす変数 $v_{r,i}$ を導入する. すると

$$\frac{\partial u_{\rm r}}{\partial \tau'} = v_{\rm r} \tag{2.3.29}$$

$$\frac{\partial v_{\rm r}}{\partial \tau'} = -(u_{\rm r}^2 + u_{\rm i}^2)u_{\rm r} + \Delta u_{\rm r} + u_{\rm i}$$
(2.3.30)

$$\frac{\partial u_{\rm i}}{\partial \tau'} = v_{\rm i} \tag{2.3.31}$$

$$\frac{\partial v_{\rm i}}{\partial \tau'} = -(u_{\rm r}^2 + u_{\rm i}^2)u_{\rm r} + \Delta u_{\rm i} - u_{\rm r} + F$$
(2.3.32)

と整理できる. 従って, ヤコビ行列 J は

$$\boldsymbol{J} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -3u_{\rm r}^2 - u_{\rm i}^2 + \Delta & 0 & -2u_{\rm r}u_{\rm i} + 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2u_{\rm r}u_{\rm i} - 1 & 0 & -u_{\rm r}^2 - 3u_{\rm i}^2 + \Delta & 0 \end{bmatrix}$$
(2.3.33)

となるため, 固有値λは

$$\lambda^{4} + (4|u|^{2} - 2\Delta)\lambda^{2} + 3|u|^{4} - 4\Delta|u|^{2} + \Delta^{2} + 1 = 0$$
(2.3.34)

より

$$\lambda = \pm \sqrt{\Delta - 2|u|^2 \pm \sqrt{|u|^4 - 1}}$$
(2.3.35)

であると求められる. (2.3.34) 式は λ に関する 4 次方程式であるので, 複素数や重解も含めると各解に対して 4 つの固有値を持つこととなる. これらの固有値の情報などから, 横軸と縦軸がそれぞれデチューニングと入力パワーであるパラメータ空間を領域分けすることができる. 近年, このパラメータ空間の安定領域のみを進むように, パワーとデチューニングを調整することで, シングルソリトン^[50] やソリトンクリスタル^[51] を発生させた研究が報告されている.

2.3.3 スプリットステップフーリエ法

LLE の定常状態を解析するのではなく,時間経過に伴う変化を解析する方法として,ス プリットステップフーリエ法^[52]がある.これは,線形演算子と非線形演算子が互いに影 響しないという仮定のもと,フーリエ変換を用いながら,それぞれ別々に計算を行う手法 である.フーリエ変換は高速フーリエ変換 (FFT) により高速に計算できるため,シミュ レーション時間を短縮できることが利点である.例えば,非線形シュレディンガー方程式

$$\frac{\partial A}{\partial z} = -\frac{i}{2}\beta_2 \frac{\partial^2 A}{\partial \tau^2} + i\gamma |A|^2 A \qquad (2.3.36)$$

を解くとする.この時,右辺を線形成分 D と非線形成分 N に分割し

$$\frac{\partial A}{\partial z} = \left(\hat{D} + \hat{N}\right)A \tag{2.3.37}$$

$$\hat{D} = -\frac{i}{2}\beta_2 \frac{\partial^2}{\partial\tau^2} \tag{2.3.38}$$

$$\hat{N} = i\gamma |A|^2 \tag{2.3.39}$$

と変形する.光が微小距離 h 進む場合を計算するためには,計算を 2 段階に分けて交互に 行う必要がある.まず初めは,線形性のみが存在すると仮定し,微小距離 h の伝搬を計算 する.この時 $\hat{N} = 0$ となるため, (2.3.37)式は

$$\frac{\partial A}{\partial z} = \hat{D}A \tag{2.3.40}$$

となる. 従って微小距離 h の伝搬後は

$$A\left(z+\frac{h}{2},\tau\right) = \exp(h\hat{D})A\left(z,\tau\right)$$
(2.3.41)

となる.次に微小距離 h 分の非線形性をまとめて考慮する.この時,線形項は存在しない と仮定するため, (2.3.37)式は

$$\frac{\partial A}{\partial z} = \hat{N}A \tag{2.3.42}$$

となる. そのため, 線形項と非線形項の両方の影響を考慮した結果として

$$A\left(z+\frac{h}{2},\tau\right) = \exp(h\hat{N})\exp(h\hat{D})A\left(z,\tau\right)$$
(2.3.43)

を得る.このように微小距離の伝搬を線形項と非線形項を分割するのが,この計算アルゴ リズムの特徴である.

D は時間微分を含む演算子であるが,フーリエ変換を用いることで計算できる.フーリ エ変換とフーリエ逆変換をそれぞれ

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \exp(-i\omega t) dt \qquad (2.3.44)$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \exp(i\omega t) d\omega \qquad (2.3.45)$$

とすると、時間微分のフーリエ変換は

$$\frac{d}{dt}f(t) = \frac{d}{dt} \left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \exp(i\omega t) d\omega \right\}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \left\{ \frac{1}{dt} \exp(i\omega t) \right\} d\omega$$

$$= i\omega \left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \exp(i\omega t) d\omega \right\}$$

$$= i\omega \mathcal{F}^{-1}[F(\omega)]$$
(2.3.46)

となる. つまり

$$\mathcal{F}\left[\frac{d}{dt}f(t)\right] = i\omega F(\omega) \tag{2.3.47}$$

であるため, *A*(*z*, *τ*) をフーリエ変換で周波数域に変換し, そこで *D* による影響を加え, 逆フーリエ変換を用いて時間域に再び変換すればよい. つまり,

$$\exp(h\hat{D})A(z,\tau) = \mathcal{F}^{-1}\exp\left[h\left\{\frac{i}{2}\beta_2\omega^2\right\}\right]\mathcal{F}A(z,\tau)$$
(2.3.48)

と計算できる.

スプリットステップフーリエ法は、本来は同時に考えるべき線形項と非線形項を分割し て計算するため、微小距離 h の伝搬するごとに

$$e = \exp(h\hat{D})\exp(h\hat{N})A(z,\tau) - \exp\{h(\hat{D}+\hat{N})\}A(z,\tau)$$
(2.3.49)

の誤差が生じる. ベーカー・キャンベル・ハウスドルフの公式により、演算子の交換を

$$[\hat{a}, \hat{b}] = \hat{a}\hat{b} - \hat{b}\hat{a}$$
 (2.3.50)

とすると,

$$\exp(\hat{a})\exp(\hat{b}) = \exp\left(\hat{a} + \hat{b} + \frac{1}{2}[\hat{a},\hat{b}] + \frac{1}{12}[\hat{a} - \hat{b},[\hat{a},\hat{b}]] + \cdots\right)$$
(2.3.51)

であるので, $\hat{a} = h\hat{D}$, $\hat{b} = h\hat{N}$ を代入すると

$$e = \frac{1}{2}[h\hat{D}, h\hat{N}] + \cdots$$
 (2.3.52)

$$= \frac{1}{2}h^{2}[\hat{D},\hat{N}] + \cdots$$
 (2.3.53)

となる.そのため,誤差を小さくするには,微小距離 h をより小さくすることが有効であ ることが分かる.あるいは台形公式を用いて積分をより正確に計算することでも,誤差を 減らすことができる.実際にスプリットステップフーリエ法を用いた解析をした際に,中 心周波数から遠く離れた意図しない周波数成分が発生してしまい,その成分が増幅されて 最終的な結果に影響を与えてしまうこともあったため,注意が必要である.

第3部 可飽和吸収効果の組み込み

3.1 数値解析プログラムの作成

3.1.1 シミュレーションの対象

可飽和吸収体を用いてパーフェクトソリトンクリスタルを実現する機構を実証するため に、カーボンナノチューブが付与された SiO₂ のトロイド型微小光共振器を想定し、数値 解析を行う. Fig. 3.1 にその概略図を示す. なおカーボンナノチューブを SiO₂ のトロイ ド型微小光共振器へ付与することは、先行研究で既に行われている. 具体的には、化学気 相成長 (CVD)^[53] やポリジメチルシロキサン (PDMS) に分散させる方法^[54] などにより、 実現された.

Fig. 3.1 Schematic illustration of silica toroidal cavity with carbon nanotubes.

SiO₂のトロイド型微小光共振器は,Siのピラーの上に,SiO₂が乗る構造をしている. この特徴的な概形は次のようなプロセスにより作製される.まず,SiO₂膜が張られたSi 基板に,フォトリソグラフィにより数 10 から数 100 µm の円形パターンを作製する.次 にドライエッチングにより,フォトリソグラフィで生成したパターン通りにSiO₂を削る. そして,気相エッチングによりSiのみを選択的に削り,最終的にはSiO₂の下部にあるSi を抉るように削ることで,Siの土台部分の概形が完成する.最後に,CO₂レーザを上部 から照射することで,光の通り道である円周部分が融解により丸まり,トロイド型の共振 器が完成する.

Fig. 3.1 において, 共振器に接しているのは, テーパファイバである. 光ファイバの被 膜を剥離し, 加熱しながら引き延ばすことで一部が細くなった構造をしている. その太さ

が細い部分では,光の漏れであるエバネッセント波が多く発生するため,光の入出力を行 うことができる.

3.1.2 計算モデル

先述したように、微小光共振器中の光波の伝搬は Lugiato-Lefever 方程式によって記述できる.

$$t_{\rm R}\frac{\partial}{\partial t}E = \left(-\frac{\alpha_{\rm tot}}{2} - i\delta - \frac{iL}{2}\beta_2\frac{\partial^2}{\partial\tau^2} + iL\gamma|E|^2\right)E + \sqrt{\theta}E_{\rm in}$$
(3.1.1)

可飽和吸収体による非線形な損失 α(E) は

$$\alpha(I) = \frac{\alpha_0}{1 + \frac{|E|^2}{P_{\text{sat}}}}$$
(3.1.2)

であるので, 解くべき方程式は

$$t_{\rm R}\frac{\partial}{\partial t}E = \left(-\frac{\alpha_{\rm tot}}{2} - \frac{\alpha_0}{1 + |E|^2/P_{\rm sat}} - i\delta - \frac{iL}{2}\beta_2\frac{\partial^2}{\partial\tau^2} + iL\gamma|E|^2\right)E + \sqrt{\theta}E_{\rm in} \quad (3.1.3)$$

となる.ここで,可飽和吸収体の線形損失は α_{tot} の項に含まれるとした.

可飽和吸収体として作用するカーボンナノチューブは共振器の一部についており,光が 共振器を1周する度にその影響を受けることとなる.つまり,分散や非線形などの効果と は異なり,カーボンナノチューブが付着した部分を通過する場合においてのみ,考慮する 必要がある.そこで,(3.1.3)式を解くにあたって,以下のような流れで計算した.

まず、テーパファイバを伝搬する光のうち $\sqrt{\theta}$ の割合で、光が共振器と結合する. そし て結合した光の伝搬を、スプリットステップフーリエ法を用いて計算する. ここで、線形 成分は線形損失、デチューニング、分散であり、非線形成分は非線形光学効果となる. そ のため、片方の成分を計算する際には、もう片方の効果が存在しないと仮定しながら解く ことで、共振器 1 周分の伝搬を計算すればいい. 最後に、その伝搬した光 E_1 が、1 周す る毎に 1 回可飽和吸収体の影響を受けることで、1 周後に E_2 へと変化する. ここで、 E_1 と E_2 の関係は

$$E_2 = \sqrt{1 - \frac{\alpha_0}{1 + \frac{|E_1|^2}{P_{\text{sat}}}}}E_1$$
(3.1.4)

である.ここまでの手順により共振器1周分のシミュレーションができるため,次の周回 分を計算するため,また外部からの入力光との結合から考える.

3.1.3 計算パラメータ

現実的なパラメータを用いるために,数値解析に登場する各種効果の適切なパラメータ の値を,文献や別の数値解析を用いて求めた.その結果を以下にまとめる.

線形損失

SiO₂ のトロイド共振器は、10⁸ を超える Q 値が報告されている⁽³⁾. そこで本研究で は、 $Q_{\text{int}} = 1.0 \times 10^8$ とした.また、共振器との結合はクリティカルカップリング状態 を想定した.つまり、 $Q_{\text{ext}} = Q_{\text{int}} = 1.0 \times 10^8$ である.これにより (3.1.3) 式の α_{tot} は 2.2×10^{-4} 、 $\theta = 5.5 \times 10^{-5}$ となる.

デチューニング

デチューニング項は、共振周波数 ω_0 とポンプ光周波数 ω_p の差に関する項であり、

$$\delta = t_{\rm R}(\omega_0 - \omega_{\rm p}) \tag{3.1.5}$$

という関係がある. LLE を用いたシミュレーションでは, (3.1.6) 式で定義された規格化 デチューニングが用いられることが多い.

$$\delta_0 = 2\delta/\alpha_{\rm tot} \tag{3.1.6}$$

共振器長

一般的なトロイド型の共振器の直径は数 10 µm から数 100 µm である ^[3,55]. ソリトンを 生成するためには異常分散が必要であるが、後述するように、そのためには比較的大きな サイズの共振器が必要である.そこで直径を 600 µm とした.すなわち、 $L = 600\pi$ µm, FSR = 110 GHz となる.

分散

先述したように、共振器の分散はセルマイヤーの式から求まる材料分散と、有限要素 法などによって求まる構造分散の和として求めることができる. SiO₂の材料分散は、 (2.1.26) 式から計算できるため、ここでは構造分散に関して話を進める.

トロイド共振器は導波路部分の断面も円であるため,共振器全体の直径をメジャー直径 D,導波路部分の円の直径をマイナー直径 d と呼び分ける. D と d の比を 10 に固定

した構造に対し, COMSOL Multiphysics を用いて有限要素法による解析を行った結果を Fig. 3.2 に示す.

Fig. 3.2(a) は波長を変化させた場合,Fig. 3.2(b) は波長を 1550 nm に固定し,直径を変 化させた場合の分散を表す.その結果,波長が長波長となる,あるいは共振器の直径が大 きくなる場合に,分散は減少することが分かる.特に,波長 1550 nm の場合,メジャー直 径が 100 µm を超えたあたりで,正常分散から異常分散へと切り替わる.直径をさらに大 きくすると異常分散が強まるが,構造分散の値は次第に小さくなり,材料分散が支配的と なる.その結果,波長 1550 nm での材料分散である $\beta_2 = -27.9 \text{ ps}^2/\text{km}$ に徐々に近づ いた.本シミュレーションでは波長 1550 nm でメジャー直径 R = 600 µm の分散の計算 結果より, $\beta_2 = -17.7 \text{ ps}^2/\text{km}$ とした.

Fig. 3.2 (a) Results of dispersion calculation as a function of wavelength. (b) Results of dispersion calculation for various cavities with a different diameter. The wavelength was fixed at 1550 nm.

非線形光学効果

非線形光学定数 γ は非線形屈折率 n_2 ,角周波数 ω_0 ,光速 c,実効断面積 $A_{\rm eff}$ を用いて

$$\gamma = \frac{n_2 \omega_0}{c A_{\text{eff}}} \tag{3.1.7}$$

と表される.実効断面積 A_{eff} は電界分布から

$$A_{\text{eff}} = \frac{\left(\iint_{-\infty}^{\infty} |E(x,y)|^2 dx dy \right)^2}{\iint_{-\infty}^{\infty} |E(x,y)|^4 dx dy}$$
(3.1.8)

と求まる.分散と同様に, COMSOL Multiphysics を用いて算出することで,メジャー直径 600 μ m の共振器の実効断面積 A_{eff} は 29.74 μ m² と算出された.

可飽和吸収効果

付与するカーボンナノチューブの量などに応じて、 α_0 や P_{sat} のパラメータは変化 するため、一概に適切なパラメータを決めるのは難しい.そこで、共振器に付与した カーボンナノチューブの特性として、変調深さ α_0 が 10^{-3} 程度であり、飽和エネルギー $I_{\text{sat}} = 15 \,\text{MW/cm}^2$ という報告例^[54] があるため、この値を参考にした.変調深さ α_0 はパ ラメータを変えた際の影響に関しても調査したが、まずは 4.0×10^{-3} として計算を行っ た.そして可飽和吸収体の飽和パワー P_{sat} は

$$P_{\rm sat} = I_{\rm sat} \times A_{\rm eff} \tag{3.1.9}$$

の関係から 4.46 W とした.

パラメータの値をまとめた表を以下に示す.

Parameter	Value	
Total loss α_{tot}	2.2×10^{-4}	
Cavity length L	$600\pi \ \mu { m m}$	
Dispersion β_2	$-17.7\mathrm{ps^2/km}$	
Modulation depth α_0	4×10^{-3}	
Nonlinear coefficient γ	$3.0 \times 10^{-3} \mathrm{W}^{-1} \mathrm{m}^{-1}$	
Effective mode area $A_{\rm eff}$	$29.74\mu\mathrm{m}^2$	
Saturation power $P_{\rm sat}$	$4.46\mathrm{W}$	
Coupling coefficient θ	5.5×10^{-5}	

 Table 3.1.
 Parameters used in the simulation for LLE.

3.2 シミュレーション結果

3.2.1 スペクトルと時間波形

比較のために,まずは可飽和吸収体の効果がない場合の結果を示す. Fig. 3.3(a) と (b) は共振器内のスペクトルと時間波形の遷移である. そして,点線で示したデチューニングの時点での,具体的なスペクトルと時間波形を Fig. 3.2(c) と (d) に示した.

Fig. 3.3 Spectrum and waveform of a microcomb generated in a microcavity without a saturable absorber.

入射した光は微小なノイズが加わった連続波であるが、そこから四光波混合により新た な周波数成分が発生した.それに対応し、チューリングロールと呼ばれる周期的に変調 された時間波形が観測できる.Fig. 3.3(c)の(i)において、新たに発生した周波数成分は 8×FSR ずつ離れていたため、Fig. 3.3(d)の(i)では、8回ある一定の周期を繰り返す波 形となった.その後、デチューニングの値が大きくなるにしたがって、変調された波形の 振幅も次第に大きくなった(Fig. 3.3(d)の(ii))が、途中から Fig. 3.3(c)の(ii)に示すよ うに、8×FSR ずつ離れた周波数以外から、新たな周波数成分が生成された.Fig. 3.3(c) の(iii)では、それらの成分が大きくなっており、Fig. 3.3(d)の(iii)で周期的な波形の間に も小さなピークを持つ成分が確認できる.その後は完全にカオスな状態となった.それま では、光が共振器を1周しただけでは、その前後での変化は少なかったが、Fig. 3.3(c)の (iv)や.Fig. 3.3(d)の(v)では、1周するごとに波形やスペクトルが大きく変わる.しか しその後、Fig. 3.3(c)の(v)ではソリトン領域に入っており、sech2乗で表される滑らかな 包絡線を持つスペクトルが得られた.時間波形は Fig. 3.3(d) の (v) に示されるように,シングルソリトンとなった.

次に,可飽和吸収体を付与した場合の結果を Fig. 3.4 に示す. Fig. 3.3 と同様に,スペ クトルと時間波形の結果であるが,可飽和吸収体の効果により,異なる振る舞いが観測さ れた.

Fig. 3.4 Spectrum and waveform of a microcomb generated in a microcavity with a saturable absorber.

可飽和吸収体が存在しない場合と同様に,連続波からチューリングロールは発生する が,そこから波形をかき乱す成分が沸き上がらない点において異なる.これは,可飽和吸 収体は弱い光を吸収し,強い光をあまり吸収しない性質が作用していると考えられる.そ して,カオスな挙動を示すことなく,最初に生成したチューリングロールがそのまま大き くなり,等間隔なソリトンが生成した.

ただし、可飽和吸収体が存在する場合の方が、ソリトンが存在できる範囲が狭い.この 原因はソリトンの存在範囲の計算から分かる^[56].最大デチューニング量 $\delta\omega_{\max}$ は共振線 幅 $\kappa = \omega_0/Q$ を用いて

$$\delta\omega_{\rm max} = \frac{\pi^2 P_{\rm in}}{16P_{\rm th}}\kappa\tag{3.2.1}$$

と表せられる.ただし、 $P_{\rm th}$ は結合効率 η を用いて

$$P_{\rm th} = \frac{\pi n_0 \omega_0 A_{\rm eff}}{4\eta n_2 D_1 Q^2} \tag{3.2.2}$$

であるため,

$$\delta\omega_{\rm max} = \frac{\pi\eta n_2 P_{\rm in} D_1 Q}{4n_0 A_{\rm eff}} \tag{3.2.3}$$

となる.したがって,実効的に Q 値が低下した可飽和吸収体が存在する場合の方が,ソ リトンの存在領域は短いことは,妥当である.

3.2.2 シミュレーションを繰り返した場合

カオスな状態を経由する場合,最終的な結果は毎回異なることが実験から分かっている¹⁷⁷.シミュレーションにおいては,初期条件として連続波にランダムなノイズを加える ことで,ランダム性が実現される.実際にシミュレーションにおいて同じ条件を仮定し, 100 回シミュレーションを繰り返した際の共振器内部パワー変化を重ねた図を Fig. 3.5 に 示す.

Fig. 3.5 Transition of intracavity power. Simulation was repeated 100 times and the results are overplotted. (a) With a saturable absorber. (b) Without a saturable absorber.

Fig. 3.5 は,それぞれ可飽和吸収体がない場合とある場合を比較した図である. Fig. 3.5(a) では共振器内部パワーが様々な経路を通るのに対し, Fig. 3.5(b) では毎回 の結果がほとんど重なっており,生成するソリトンのばらつきが存在しない.また, Fig. 3.5(a) では, N が 0 個から 4 個であるのに対し, Fig. 3.5(b) では N が 8 個と多い. そのため,可飽和吸収体の存在により損失が増えたにもかかわらず,共振器内部パワーの 合計は大きくなる. なお,発生するソリトンのパワー $P_{\rm sol}$ やパルス幅 au は以下のように 理論的に求まる ^[57].

$$\tau = \sqrt{-\frac{c\beta_2}{2n\delta\omega}} \tag{3.2.4}$$

$$P_{\rm sol} = \frac{2\eta A_{\rm eff}}{n_2 Q} \sqrt{-2nc\beta_2 \delta\omega} = \frac{-2c\eta A_{\rm eff}\beta_2}{n_2 \tau Q}$$
(3.2.5)

共振器内部パワーの変化の仕方から,共振器内部の状態を推察できる. Fig. 3.5(a) に注 目すると,波長掃引を開始した直後の,共振器に光がカップリングし始め,共振器内部パ ワーが徐々に増加する領域が,変調した波が発生しているチューリングロール状態に対応 する. そして,その後の内部パワーが大きく変動する領域は,共振器内の波形も同様に激 しく変動するカオス状態である. そして,その後の安定してパワーが上昇している領域 が,ソリトンが発生している状態であり,その発生している個数 N は内部パワーの大き さから算出できる. このソリトン領域において,垂直な線がいくつか見られるが,それは 途中で共振器中のソリトン同士が衝突するなどした結果消滅することで生じる遷移であ る. 一方で Fig. 3.5(b) では,激しく変動する状態を経由していない. そのため,単調な増 加をしており,チューリングロールから直接ソリトン状態に遷移した.

なお Fig. 3.5(a), (b) どちらにおいても,規格化デチューニングが0となる付近で,内部 パワーが一時的に減少する様子が見られる.この現象は,チューリングロールの振幅が大 きくなり,パルス形状へと移行する境界で生じる.

*N*の分布を Fig. 3.6 に示す.可飽和吸収体の効果によりカオス状態を避けてソリトンを 発生させることができるため,ソリトンの数は一意に決まった.

Fig. 3.6 Histograms of generated dissiparive Kerr soliton. (a) Without a saturable absorber. (b) With a saturable absorber.

3.2.3 パルス間隔

複数個のソリトンが発生するマルチソリトン状態は、その間隔が等間隔であるか否かが 重要である.なぜなら、共振器1周中のパルス間距離が複数個存在すると、スペクトルで 干渉が発生するからである.

Fig. 3.7 に, 共振器中のパルスの位置を重ねた図を示す. 図中の円は共振器を表し, 短 波長側から長波長側への波長掃引をする度に, 得られたソリトンの1つが円の上部に位置 するように回転させ, 円上に薄い色で位置をプロットした. 同じ位置に複数回パルスが発 生すると, より濃い色となる.

Fig. 3.7 Relative location of a generated pulses. Black circle represents a resonator. (a) Without a saturable absorber. (b) With a saturable absorber.

Fig. 3.7 から発生したソリトンの相対的な位置が分かる.まず,Fig. 3.7(a) に示す可飽 和吸収体がない場合では,満遍なくソリトンが発生した形跡があるものの,円上部の周辺 では一度もソリトンが生成していない.これは,ソリトンが存在可能な位置に制限がある ことが原因である.一般に,近い位置に存在するソリトンは,その隣り合うソリトン間で 相互作用が働き,それまで形成していたパルスのパターンが乱されてしまうことが知られ ている^[58].その結果,特にマイクロコムの場合,存在し得るソリトンの最大数 *N*_{max} が

$$N_{\rm max} \simeq \sqrt{\frac{\kappa}{D_2}} \tag{3.2.6}$$

と定まる ^[7].

一方で, Fig. 3.7(b) に着目すると, すべての点が完全に重なっており, 濃い色で表されている. ソリトンはちょうど 360°/8 = 45° ずつ離れた位置に現れた. つまり, 発生したソリトンはパーフェクトソリトンクリスタルであると言える.

ただし,今回のシミュレーション条件では, N = 8 であったため,完全に等間隔となっ たが, N がそれ以外の値であれば,シミュレーション上では僅かながら間隔が異なるこ とに注意が必要である.この数値解析は,高速フーリエ変換(FFT)を用いたスプリット ステップフーリエ法に基づいて計算を行うため,共振器1周をFFT に適した2のべき乗 に分割する.そのため,共振器1周を2のべき乗以外で正確に等分することはできず,N が2のべき乗以外の場合においては,ピーク位置がプロット間隔1つ分程度ずれる場合が あるが,これはシミュレーションの都合上生じる誤差であり,実際には等間隔になると考 えられる.

3.2.4 変換効率

パーフェクトソリトンクリスタルの利点の1つに,入射光からコム光への変換効率の 高さが挙げられる.パーフェクトソリトンクリスタルを構成するソリトン数 N によって, 各コム線のパワーはシングルソリトンと比較して N² 倍となる^[26].変換効率 η の定義^[59] を (3.2.7) 式に示す.

$$\eta = P_{\rm out}^{\rm other} / P_{\rm in}^{\rm pump} \tag{3.2.7}$$

ただし、 $P_{\text{in}}^{\text{pump}}$ はポンプ光のパワー、 $P_{\text{out}}^{\text{other}}$ は出力光のうちポンプ光を除く成分のパワーである。 $P_{\text{in}}^{\text{pump}}$ は 70 mW の入力を仮定しているため容易に求まるが、 $P_{\text{out}}^{\text{other}}$ は

$$P_{\rm out}^{\rm other} = |-E_{\rm in} + \sqrt{\theta} E_{\rm cavity}|^2 \tag{3.2.8}$$

から計算する. Fig. 3.3 や Fig. 3.4 に示した共振器内部のスペクトラムのパワーではない ことに注意が必要である.

実際に,可飽和吸収体が存在する場合としない場合において,変換効率を調べた結果を Fig. 3.8 に示す.変換効率は,シングルソリトンの場合,最大 3% であったが,パーフェ クトソリトンクリスタルの場合は 13% と大幅に上昇した.可飽和吸収体の付与によって 損失が増えた結果,Q値や最大デチューニング量が変化しているため,今回の比較の場 合,個数と変換効率が単純な関係で結びつかないことに注意が必要である.

Fig. 3.8 Conversion efficiency for (a) a single soliton in a cavity without a saturable absorber and (b) a perfect soliton crystal in a cavity with a saturable absorber.

第4部

パーフェクトソリトンクリスタルの発生条 件に関する考察

4.1 デチューニングとポンプパワー

4.1.1 実効デチューニングの導出

前節では,規格化デチューニング $\delta_0 = 2t_R(\omega_0 - \omega_p)/\alpha_{tot}$ を用いて解析を行った.し かし,この式に含まれる共振周波数 ω_0 は,非線形光学効果の影響を考慮しない場合にお ける共振周波数である.すなわち ($\omega_0 - \omega_p$)が正である場合であっても,共振周波数がポ ンプ光周波数を超えた,レッドデチューニングであるとは限らない.

レッドデチューニングであるかを判断するためには、非線形光学効果などの影響も考慮 した実効的なデチューニングを計算する必要がある。特に、前章で発生したパーフェクト ソリトンクリスタルはチューリングロールから連続的に遷移したため、チューリングロー ルとパーフェクトソリトンクリスタルの境界を明確にするためにも、重要である。

実効デチューニングは、自己位相変調と相互位相変調による位相変化から求めることができる. 共振器内のポンプ光周波数のパワーを |*E*_{in}|,その他の周波数のパワーを |*E*_{comb}| とすると、XPM による影響は SPM による影響の 2 倍であることに注意して

$$\delta_{\text{eff}} = \frac{2}{\alpha_{\text{tot}}} \left(\delta - \gamma L \left(|E_{\text{in}}|^2 + 2 \times |E_{\text{comb}}|^2 \right) \right)$$
(4.1.1)

となる. 実行例を Fig. 4.1 に示した. 非線形光学効果が存在しない場合, 実効デチュー ニングは元の規格化デチューニングと同じ値となるが, マイクロコムが発生する領域に おいては非線形光学効果が顕著となり, Fig. 4.1 (a) に示した共振器内部パワーに従っ て, Fig. 4.1 (b) のように変化する. 特に, 共振器内部パワーが大きい場合には, 実効デ チューニングと規格化デチューニングの差も大きくなることが分かる. Fig. 4.1 に, 実効 デチューニングが 0 となる箇所を点線で示した. この値が, ブルーデチューニングとレッ ドデチューニングの境界であり, 共振器内部パワーが下落し, カオス状態からソリトンが 形成する領域に移行し始めていることが分かる. この結果は, 先行研究で示された実効デ チューニングの結果^[60] とも一致している.

Fig. 4.1 (a) Transition of intracavity power. (b) Normalized detuning. When the effective detuning exceeds 0, the detuning shift from blue to red and dissipative Kerr solitons are formed.

4.1.2 デチューニングとポンプパワーの影響

Lugiato-Lefever 方程式の解析として、デチューニング量とポンプパワーをそれぞれ横 軸と縦軸に設定し、そのパラメータ空間を領域分けすることで、システムの安定性の評価 がなされていることは既に述べた.本研究においても、可飽和吸収体の効果を付与した上 でLugiato-Lefever 方程式を定常解析すると、システムの全体像を把握できるが、非線形 の項を追加し複雑性が増しているため、線形化するのは困難である.そこで、以下の手順 によって、解析を行った.

まず、ポンプパワー $P_{\rm in}$ と規格化デチューニング δ_0 に任意の値を設定した.そして、 元の共振波長から十分離れた波長から、規格化デチューニングが δ_0 に達するまで $P_{\rm in}$ の パワーで波長掃引を行うシミュレーションをした.その時に共振器中で生じている波形 を確認し、ピークの数 N を数えた.そして、横軸と縦軸にデチューニング量とポンプパ ワーを取ったグラフの点 (δ_0 , $P_{\rm in}$)をカラーバーに示す N に応じた色で塗った.この手 順を $P_{\rm in}$ と δ_0 の値を少しずつ変えてプロットしたい点の数だけ繰り返すことにより、カ ラーマップを作成した.

Fig. 3.8(a) の色の情報から、連続波、チューリングロール、カオス、ソリトンの領域が

Fig. 4.2 Stability chart for (a) without a saturable absorber and (b) with a saturable absorber. We can divide the area into several parts: CW (Continuous-wave), TR (Turing roll), Choas, DKS (dissiparive Kerr soliton), PSC (Perfect soliton crystal). Waveforms in the condition marked (i)-(vi) are illustrated in (c).

判別できる.まず,濃青色で表される N = 0 の時は,共振器内の光のパワーが場所に依 らず一定となる,連続波である.これは,波長掃引を始めた直後やソリトンが消滅した 後で見られる.次に,連続波の後初めて N が変化する場合に生成するのが,チューリン グロールである.図中では,青緑色で示されている.そして,カオスでは激しく乱れるた め,大小さまざまなピークを持つ.そのため,Nの値は大きくなり黄色で表されている. 一方で,ソリトン領域ではソリトンの数とピークの数が一致する.可飽和吸収体が存在し ない場合,ソリトンの数は数個と比較的少ないため,連続波よりは薄い青色で示される領 域が対応する.

Fig. 3.8(b) も同様に領域分けができるが, Fig. 3.8(a) とは異なり, 新たにパーフェクト ソリトンクリスタル領域が出現した. チューリングロールから直接ソリトン状態に移行す るため, チューリングロールが発生し, ソリトンが消滅するまで, 同じパワーでは *N* が 一定となる.チューリングロールとパーフェクトソリトンクリスタルの境界は,前節で計 算した実効デチューニングの正負によって分類した.

また,色だけではなく,隣り合う点の色と成す模様からも,その領域の特徴を推察する ことができる.例えば通常のマルチソリトンが生成する領域では,モザイク状の模様と なっている.これは, δ_0 や P_{in} の条件を僅かに変化させた際に,異なるピークの数の波形 が発生したことを意味しており,ランダムな特性を意味する.一方で,パーフェクトソリ トンクリスタルが派生する領域では隣り合う色が同じであり,単色で広範囲が塗りつぶさ れたような模様となる.これは決定論的にパーフェクトソリトンクリスタルが発生したこ とを示唆しており,可飽和吸収体の効果によりカオスな領域を経由せずにソリトン領域に 遷移可能となったことが原因であると考えられる.

Fig. 3.8(b) の特徴に関して,注目すべき点を4つ挙げる.1つ目は,ポンプパワーが低 い場合などにおいて,連続波の領域が増えることである.これは,可飽和吸収体を追加し たことにより,損失が増加し,四光波混合の閾値を超えるために必要なポンプパワーが 増加したためである.2つ目は,四光波混合の閾値よりも大きいパワーのうち,比較的低 いパワーでのみ,パーフェクトソリトンクリスタルが発生することである.この特徴は, モード結合を利用したパーフェクトソリトンクリスタルの先行研究においても指摘されて おり^[26],今回の可飽和吸収体により発生したパーフェクトソリトンクリスタルと共通の 特徴を持っているといえる.3つ目は,パワーが大きい場合は,可飽和吸収体が存在しな い場合と同様にマルチソリトンが生成することである.これは,大きな入力パワーに対し ては,可飽和吸収体がカオスな成分を抑えきれないからであると考えられる.4つ目は, パーフェクトソリトンクリスタルの数はパワーで変えられることである.パーフェクトソ リトンクリスタルの領域に着目すると,ポンプパワーに応じて,N=7から10まで変化 した.Nがどのようにして決定されるかに関しては次章で詳細に考察する.

4.2 分散

4.2.1 チューリングロール

結論から述べると、分散を変えることによっても N を変化させることができるが、その 理由はチューリングロールの周期が変わるからである.可飽和吸収効果によって発生する パーフェクトソリトンクリスタルは、チューリングロールから直接遷移するため、チュー リングロールの周期が N を決定すると言い換えられる.そのため、この節では、チュー リングロールに関する理論をもとに、パーフェクトソリトンクリスタルの形成への影響を 考察する.

そもそもチューリングロールとは、弱い摂動が指数関数的に増幅する変調不安定性と 呼ばれる性質により発生し、異常分散と非線形性を持つファイバー中においても観測で きる現象である^[11].マイクロコムの場合も同様に変調不安定性が生じるのだが、ファ イバーとは異なりデチューニングの影響なども考慮しなければならない.そこでまず、 Lugiato-Lefever 方程式 (2.3.1) 式の定常解 a_0 に、 a_- と a_+ の振幅を持つ小さな摂動が加 わった

$$E(t,\tau) = a_{-} \exp(-i\Omega\tau) + a_{0} + a_{+} \exp(i\Omega\tau)$$
(4.2.1)

を考える ^[61,62]. ここで, a_0 は定常解であるため, $P_0 = |a_0|^2$ を用いて

$$a_0[\alpha_{\rm tot} + i(\delta - \gamma L P_0)] = \sqrt{\theta} E_{\rm in} \tag{4.2.2}$$

を満たす. $E(t,\tau)$ を (2.3.1) 式に代入し, さらに線形化して a_- と a_+ に関する同時方程 式を導くことで, a_- と a_+ は $\exp(\Lambda(\Omega)t)$ に比例する解を持つことが分かる. ここで, $\Lambda(\Omega)$ は利得係数であり

$$\Lambda(\Omega) = -\alpha_{\text{tot}} + \sqrt{(\gamma L P_0)^2 - (\kappa(\Delta))^2}$$
(4.2.3)

を満たす.ただし、 $\kappa(\Delta)$ は位相のミスマッチを表す項であり、

$$\kappa(\Delta) = \delta - \frac{L\beta_2 \Omega^2}{2} - 2\gamma L P_0 \tag{4.2.4}$$

である.チューリングロールの周期的な波形の個数はこの利得の分布によって決まる. Fig. 4.3(a) に示すように,利得は $\Lambda(\Omega)$ は $\kappa(\Delta) = 0$ すなわち

$$\Omega_{\max}^2 = \frac{2}{L\beta_2} (\delta - 2\gamma L P_0) \tag{4.2.5}$$

において最大となり,これにより,例えば共振器の *N* = 8 番目のモードが正の利得を得たとする.その場合, Fig. 4.3 に示すようにチューリングロールは 8 個の周期からなる波形となる.

4.2.2 分散によるソリトンクリスタルの個数の変更

ポンプパワーを変えることで,発生するパーフェクトソリトンクリスタルの数も変化 する理由は, (4.2.5) 式がポンプパワーの関数となっていることから,説明がつく.また (4.2.5) 式は,分散を変えることでも,*N*を変更することが可能であることを示唆してい

Fig. 4.3 (a) Schematic illustration of modulation instability gain. (b) Waveforms of Turing rolls and perfect soliton crystral. Here the modes 8-FSR apart from the center frequency receive the largest gain as illustrated in (a).

る.分散の変更は先述したように、トロイド型共振器のメジャー直径とマイナー直径の比 を調整することなどにより実現できる.Fig. 4.4 に、現実的に変更できる範囲内で分散を 変化させた場合のパーフェクトソリトンクリスタルの生成結果を示す.分散の大きさに応 じて、チューリングロールの周期が変わり、N が変化したことが分かる.

*N*を変えられる,すなわち繰り返し周波数を変えられるパーフェクトソリトンクリス タルは RPSC (Repetition rate controllable Perfect Soliton Crystal) と呼ばれ,様々な応用に フレキシブルに用いることができると期待されているが^[29],可飽和吸収効果によって発生 するパーフェクトソリトンクリスタルも,この特性を持つことが分かった.

Fig. 4.4 Transition of intracavity power for different dispersion. The waveforms at the points indicated by the arrows (i)-(iv) are shown below. (a) $\beta_2 = -27.7 \text{ ps}^2/\text{km}$. (b) $\beta_2 = -7.7 \text{ ps}^2/\text{km}$.

4.3 変調深さ

4.3.1 異なる変調深さが与える影響

可飽和吸収体の性能指標の1つに,変調深さ α_0 がある.この値は,添付するカー ボンナノチューブの量に応じて変化することが知られているが^[63],モード同期を実 現するためには,適切な α_0 となるよう設計する必要がある^[54].そこで Fig. 4.5 に $\alpha_0 = 0, 3 \times 10^{-3}, 4 \times 10^{-3}, 5 \times 10^{-3}$ として,前節と同様のデチューニングとポンプパ ワーをパラメータに取ったマップを作成した.

Fig. 4.5 Stability charts when the modulation depth α_0 is (a) 0, (b) 3×10^{-3} , (c) 4×10^{-3} , (d) 5×10^{-3} . Red lines represents the zero-cross point of effective detuning.

可飽和吸収体が存在する場合,四光波混合が生じる閾値が増え,ソリトンが存在できる領域が狭まることは既に述べたが, α_0 の増加に伴い,その傾向が顕著になった.また,パーフェクトソリトンクリスタルが生成する領域は, α_0 の値が大きくなるほど.より大きな入力パワーを必要とし,図中ではより上部に移動している.ただし, $\alpha_0 = 5 \times 10^{-3}$

においては,その他の α₀ の値の場合には見られなかった,パーフェクトソリトンクリス タル領域の間にマルチソリトンが生成する領域が存在している.その詳細を Fig. 4.6 に 示す.

Fig. 4.6 Transition of intracavity power for different input power $P_{\rm in}$ when α_0 is 5×10^{-3} . (a) $P_{\rm in} = 140$ mW. (b) $P_{\rm in} = 160$ mW.

パーフェクトソリトンクリスタルが生成する領域から,さらに入力パワーを高めると, Fig. 4.6(a) に示すように,通常のマルチソリトンが生成し始めた.なお,ソリトンが発生 する直前の共振器内部平均パワーに着目すると,振幅が減衰しながらも振動しているが, これはブリージング領域と呼ばれている^[64].時間波形はパルス幅が広がったり狭まった りを繰り返しているが,次第にパワーが安定したソリトンへと移行する.

 $\alpha_0 = 5 \times 10^{-3}$ 以外の結果を見ると、一旦マルチソリトンが生成する領域に入ると、 それ以降パワーを増やしたとしても、パーフェクトソリトンクリスタルは生成しないが、 $\alpha_0 = 5 \times 10^{-3}$ の場合は、再びパーフェクトソリトンクリスタルが生成した.ただし、 Fig. 4.6(b) に示すように、カオス状態には至らないものの、ブリージングする様子が見 られ、これまでのパーフェクトソリトンクリスタル生成とは異なる遷移の仕方となった. ピークの数だけではブリージング領域がマップ上でどこに存在するかを判別できないが、 今回用いたポンプパワーではブリージング領域を経由したと考えられる.

4.3.2 パーフェクトソリトンクリスタルの個数が切り替わる境界

パーフェクトソリトンクリスタルが生成する領域は、ポンプパワーに応じて段階的に *N* が 1 ずつ変化するが、その境界部分を注意深く見ると同じポンプパワーであっても、異な る *N* となる場合があることが分かる.これは、変調不安定性利得 Λ(Ω) を受けるモード が (4.2.5) 式で求められる最大利得となる周波数と完全に重なっておらず,複数のモード が同程度の利得を得ていることが原因であると考えられる. 具体的な例を, Fig. 4.7 に示 す. どちらも $P_{\rm in} = 100 \,\mathrm{mW}$, $\alpha_0 = 5 \times 10^{-3}$ と同じ条件でシミュレーションした結果で あるが,チューリングロールの波形が僅かに異なる. Fig. 4.7(b) では 9 個分の周期が形成 されているが, Fig. 4.7(d) では中央付近でピークがはっきりと表れておらず,引き延ばさ れたような波形をしている. そのため,パルス化した後は 2 つのピークが合体し 1 つのパ ルスへと変化し,最終的に 8 つのパーフェクトソリトンクリスタルとなった. これは,中 心周波数から 8-FSR 離れたモードと 9-FSR 離れたモードが受け取る利得がほとんど同じ であり,初期の小さなランダムなノイズの違いにより, N = 8 にも 9 にもなり得たのだ と考えられる.

Fig. 4.7 Results for the simulation under the condition of $P_{in} = 100 \text{ mW}$ and $\alpha_0 = 5 \times 10^{-3}$. (a) and (b) shows the results ended in N = 9. (c) and (d) shows the results ended in N = 8.

4.4 回復時間

4.4.1 遅い可飽和吸収

これまで可飽和吸収体の効果は (3.1.2) 式を用いて計算した.この式はカーボンナノ チューブを始めとする回復時間が速い可飽和吸収体のモデルとして有効であるが,今回の シミュレーションで得られた結果のようにパルス間隔が短い場合,可飽和吸収体の回復時 間は無視できない問題となると考えた.そこで,回復時間を考慮した微分方程式を組み込 むことで,より厳密な議論を行う.

回復時間の影響を考慮した,遅い可飽和吸収体の損失 α は回復時間 τ を用いて

$$\frac{d\alpha}{dt} = -\frac{\alpha - \alpha_0}{\tau} - \frac{\alpha |E|^2}{P_{\text{sat}}\tau}$$
(4.4.1)

で与えられる^[65]. この (4.4.1) 式は $\tau \to 0$ とすると, (3.1.2) 式と等しくなるため, 0 に近い値となる非常に小さな τ に対しては, (4.4.1) 式と (3.1.2) 式は同じことを意味する.

カーボンナノチューブの回復時間 τ は、一般にピコ秒程度である。厳密には、条件に よって異なり、例えば半導体型のカーボンナノチューブ自体の回復時間が数ピコ秒である が、金属型のカーボンナノチューブへのキャリア移動を介す場合は、より高速に1ピコ秒 を切る時間で回復することが知られている^[66].また、用いるバンドによっても τ は異な る値となり、1 ps 程度となる E₁₁ 遷移以外にも、数 100 fs 程度を示す E₂₂ 遷移が存在す る^[66].

 τ の影響により,可飽和吸収体の応答がどのように変化するのかを Fig. 4.8 に示した. Fig. 4.8 (a) に示した波形に対し,回復時間が無限に速いと仮定した (3.1.2) 式を計算する と, Fig. 4.8 (b) に示すように,パルスのピーク部分で損失が最小となり,元の波形と同様に 左右対称な概形となる.そして, $\tau = 0.1 \text{ ps}$ と比較的短い回復時間を仮定した Fig. 4.8 (c) でも,回復時間が無限に速いと仮定した場合とほとんど同じ結果が得られる.しかし,一 方で $\tau = 1 \text{ ps}$ を仮定した Fig. 4.8 (d) では,回復時間を考慮した影響が現れている.入 射波形のピークを過ぎた後も少ない損失量を示す時間が比較的長く続き,カーボンナノ チューブにパワーが入射される前と同様の状態に戻るまで,時間を要していることが分 かる.

Fig. 4.8 (a) Waveform of input light injected into a saturable absorber. (b-d) Losses caused by saturable absorber in respond to a input light. (b) Result when recovery time τ is not considered. In other words, the calculation is based on Eq. (3.1.2). (c) Result when τ is 0.1 ps. (d) Result when τ is 1 ps.

4.4.2 遅い可飽和吸収によるパーフェクトソリトンクリスタルの発生

この遅い可飽和吸収体の計算モデルを LLE に組み込む際には注意が必要である. (4.4.1) 式は 4 次のルンゲクッタ法を用いて計算したが、その結果は計算領域の左端と右端 での値、すなわち t = 0 と $t = t_R$ での値は連続的にならないことがある. しかし、LLE の成立過程を踏まえると、異なる周回数の電界が境界条件を満たしていることや、光が共 振器を 1 周した際の波形の変化がわずかであることなどが必要である. そこで、与えられ た波形に対する可飽和吸収量をまず計算し、 $t = t_R$ での値を初期値として、もう一度可飽 和吸収量を計算することで、境界条件を満たし、正確に計算できるプログラムを作成した.

その結果を Fig. 4.9 に示す.回復時間は 0.5 ps に設定し,共振器のパラメータはこれまでの計算と同様である.最初はチューリングロールからパーフェクトソリトンクリスタルが生成していたが,途中でほとんどのソリトンが衝突し合い,消滅した.

回復時間を考慮していない場合との比較をすると多くの差異が見られる.まず,チュー リングロールからパーフェクトソリトンクリスタルが生成した後,各パルスがドリフト しているが,これは高次分散を始めとする非対称な項を考慮した際に発生する現象であ る^[67].またソリトンが存在できる範囲も大きく変わったが,これは回復時間を考慮した結 果,正味の損失の総量が増えたからである.

パーフェクトソリトンクリスタルからマルチソリトン状態に遷移した原因は,ソリトン の間隔に対して回復時間が短かったことがであると推察され,両者の大きさが適切であれ

Fig. 4.9 Generation of perfect soliton crystal with a slow saturable absorber. (a) illustrates a transition of waveform. The waveform and transmittance of saturable absorber at the detuning marked in the dashed line is shown in (b) and (c).

ばパーフェクトソリトンクリスタルは達成できる. その一例を Fig. 4.10 に示す. 計算パ ラメータは $P_{\rm in} = 50 \,\mathrm{mW}$. $\alpha_0 = 3.0 \times 10^{-3}$. $\beta_2 = -25.0 \,\mathrm{ps^2/km}$, $\tau = 0.5 \,\mathrm{ps}$ とした. 共振器の設計を工夫することで, これまでより強い負の分散にし, チューリングロールの 周期を長くすることを想定しているが, ほかには共振器のサイズ自体を大きくすることで も回復時間に対してパルス間隔を広げることができる. いずれにせよ, 回復時間を考慮し た場合においても適切な条件下では, パーフェクトソリトンクリスタルを生成することは 可能であると結論付けられる.

Fig. 4.10 Generation of perfect soliton crystal with a slow saturable absorber. (a) illustrates a transition of waveform. The waveform and transmittance of saturable absorber at the detuning marked in the dashed line is shown in (b) and (c). Simulation condition is as follows: $P_{\rm in} = 50 \,\mathrm{mW}$. $\alpha_0 = 3.0 \times 10^{-3}$. $\beta_2 = -25.0 \,\mathrm{ps}^2/\mathrm{km}$, $\tau = 0.5 \,\mathrm{ps}$.

第5部

パーフェクトソリトンクリスタルの発生に 向けた実験

5.1 共振器の作製

5.1.1 実験の方針

前章ではパーフェクトソリトンクリスタルを決定論的に生成できることを示し,その発 生に関する考察をした.そこで次のステップとして,シミュレーションではなく,その実 現に向けて実験に取り組んだ.

しかし、シミュレーション結果を踏まえると、カーボンナノチューブを添加したシリカ のトロイド微小光共振器に実験を行うにあたり、懸念点がある.まず、共振器の Q 値が 十分に高められないことである.シミュレーションで想定した Q 値は 10⁸ であり、SiO₂ のトロイド微小光共振器を用いた先行研究^[3]と比較しても、現実的な値である.しかしな がら、当研究室においても SiO₂ のトロイド微小光共振器の高 Q 値化を目指した研究が行 われているものの、作製できる共振器は Q 値は 10⁷ 程度にとどまっており、目標値より も 1 桁小さい^[68].さらに、カーボンナノチューブを付与する手法として、PDMS に分散 させ共振器にコーティングする手法があるが、その場合 Q 値が 10⁶ 台まで低下すること が明らかとなった^[69].

このような条件下で非線形光学実験を行うのは厳しいため,トロイド型微小光共振器で はなく,高Q値化が比較的容易に実現できるプラットフォームに変更することにした. シミュレーションで明らかになったのは,可飽和吸収効果によりチューリングロールから 直接パーフェクトソリトンクリスタルに遷移するということであり,共振器の形状を変え てもなお同様の現象を発生できると考えられる.その他の候補としては,ロッド型や微小 球型がある.ロッド型の場合,共振器サイズは一般に数 mm 程度であるため,広いパルス 間隔も許容されることとなり,パーフェクトソリトンクリスタルの実現に向けて有利に働 くと考えられる.しかし,可飽和吸収体の付与までを見通すと,スピンコートを用いて均 一に塗布するなどの手法の適用ができず,支障が出ると考えた.一方,微小球は単純な形 状ゆえにモードの数が多いという欠点があるが,高Q値化を容易に実現することができ る.しかも,Fig.5.1 に示すように,可飽和吸収体としての機能のためではないが,2次 元材料であるグラフェンを微小球共振器に付与した先行研究があり,Q値を維持したまま 転写できることが分かっている.そのため,微小球型の共振器および可飽和吸収体として グラフェンを用いることにした.グラフェンは,カーボンナノチューブと比較して回復時 間が短い点も,密なパルス列を生成することを目的とする本研究において都合が良い.

Fig. 5.1 The optical microscopy and SEM pictures show the exfoliated graphene deposited on the microsphere, with area $\approx 80 \,\mu\text{m} \times 30 \,\mu\text{m}$. Scale bar: $40 \,\mu\text{m}$. [T. Tan, Z. Yuan, H. Zhang, G. Yan, S. Zhou, N. An, B. Peng, G. Soavi, Y. Rao, and B. Yao, "Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator," Nature Communications **12**, 8–15 (2021). https://doi.org/10.1038/s41467-021-26740-8 © 2021 The Author(s) (Licensed under CC BY 4.0) https://creativecommons.org/licenses/by/4.0/]

5.1.2 微小球共振器の作製

微小球共振器の作製手順は以下の通りである.まず、シングルモードファイバを 10 cm 程度にハサミで切断し、その先端の被膜を光ファイバ用のストリッパを用いて剥離した. そして、断面をファイバカッタで垂直にし、エタノールを含ませたベンコットで拭くこと で、表面に付着した異物を除去した.それをファイバ融着器の片側にセットし、アーク放 電を行った.するとファイバの先端が球状に丸まり、微小球共振器が完成した.

微小光共振器への光の入出力はテーパファイバを近づけることで行った. その様子を Fig. 5.2 に示す.まず,作製した微小球共振器はスライドガラスの上にテープで固定した. この際,微小球部分のみが僅かにスライドガラスの端から飛び出している状態が望まし く,はみ出している部分が長すぎる場合,揺れなどの影響を受けカップリングが安定しな いため,注意が必要である. Fig. 5.2(a) に示すように,スライドガラスごとステージ上に 置き,位置や高さを調整することで,テーパファイバと微小球共振器を触れさせた.その 微調整は上面と正面に設置したカメラで確認しながら行った.テーパファイバに接した状 態の微小球共振器を Fig. 5.2(b) に示す.

Fig. 5.2 (a) Overall view of the alignment system. (b) Picture of microsphere cavity and tapered fiber taken by the side camera.

この微小球の特性を評価するために, Fig. 5.3(a) に示す実験セットアップを組み, *Q* 値の測定を行った. 波長可変レーザー (Santec TSL-710) によって波長を掃引すると, 共 振波長において透過率が低下し, ディップが見られる. それをローレンツ関数でフィッ ティングすることにより *Q* 値を算出した. 共振モードの例を Fig. 5.3(b) に示す. *Q* 値は 8.0 × 10⁷ となった. なお, 10⁸ や 10⁹ を超える高 *Q* 値なモードでに関しては, リングダ ウン^[70] と呼ばれる干渉模様が発生し, その干渉の結果から *Q* を求めることができる. こ れは, 共振器に入射するレーザの波長を連続的に掃引しているため, 共振器内に閉じ込め られた光が再び導波路と結合する際に, 異なる波長の光と干渉することで生じるものであ る. リングダウンが現れる場合, その電界の包絡線は, 光子寿命 τ_p を用いて

$$I(t) = I_0 \exp{-\frac{t}{\tau_{\rm p}}} \tag{5.1.1}$$

と減衰するため,指数関数でフィッティングすることにより,光子寿命が分かり,*Q*値を 求めることができる.

Fig. 5.3 (a) Experimental setup for Q measurement using a powermeter. FPC: fiber polarization controller. PWM: power meter. (b) Examples of transmission spectrum with a fitting curve.

5.2 ソリトン発生

5.2.1 実験セットアップ

まず,可飽和吸収体の効果の比較のために,何も付与していない状態でソリトンを発生 させることを目的に実験を行った.手順としては,高Q値なモードが存在する共振器に, 強いパワーを入力し,四光波混合によりマイクロコムが発生する状態にする.その後,さ らにカップリングや偏波,パワーを調整することにより,透過波形に特有のステップ状 の遷移を確認する.Q値やスペクトルなども同時に測定するために,Fig.5.4 に示す実験 セットアップを組んだ.

Fig. 5.4 Experimental setup for soliton generation. FG: function generator. EDFA: erbium-doped fiber amplifier. MZI: Mach–Zehnder interferometer. FPC: fiber polarization controller. OSA: optical spectrum analyzer. FBG: fiber Bragg grating. ATT: attenuator. PD: photo diode. OSC: oscilloscope.

レーザ光源には,波長可変レーザ (Santec TSL-710) を用いた. このレーザの線幅は 約 100 kHz である.まず,波長を 1550 nm に設定し,ファンクションジェネレータで -1.25 V から 1.25 V の三角波を入力することで波長を連続的に掃引した.この際,三角 波の周期に応じて掃引速度が変わるため,Table 5.1.に示す SiO₂ 材料でソリトンを生成 した先行研究の実験条件を参考にした.この調査の結果から,非常に速い速度で掃引する ことで熱の影響を抑えるファストスキャン法や,2台のレーザを用いてパワーを調整する 2 波長ポンプなどの方法を使う特殊な場合を除いては,0.1 MHz/µs から 2 MHz/µs の範 囲であることが分かったため,その範囲を目安に調整しながら,実験を行った.

Structure	Q factor	FSR (GHz)	Scan speed (MHz/ μ s)	Note	Refs.
Disk	4.0×10^8	22	0.32		[71]
Disk	1.6×10^8	22	0.1-2		[72]
Wedge	$1.8 imes 10^8$	22	100000	Fast scan	[73]
Disk	$3\sim 5 \times 10^8$	10	0.1		[74]
Rod	3.7×10^8	50.6	0.035	Two pump	[75]
Sphere	3×10^8	100	0.5		[76]
Wedge	2.5×10^8	22	1		[5]

Table 5.1. Summary of experimental conditions for a soliton generation in a silica microresonator.

レーザ光はファイバカプラで 99:1 に分けられ,主成分をエルビウム添加ファイバ光増 幅器に,そして残りをマッハツェンダー干渉計に入射した.マッハツェンダー干渉計から 得られる干渉波形の周期は 20 MHz となることから,時間軸を周波数軸に変換するために 用いたが,大半の光はエルビウム添加ファイバ光増幅器によって,パワーが増幅されるこ ととなる. 高 Q 値な微小球共振器では数 10 mW 程度の入力光で非線形効果が観測でき るが,ソリトンステップの長さを伸ばすための手段として,最大 300 mW 程度までパワー を変えながら実験を行った.

エルビウム添加ファイバ光増幅器の次は, 偏波コントローラを通過させた. 偏波が変わ ると別のモードが見えるようになるため, 任意のモードが観測できるよう調整するために 挿入した. そして共振器との光のカップリングを, Fig. 5.2(a) に示した機構で行った. 正 面と上部に設置したカメラによって共振器とテーパファイバの接触を確認するほか, 治具 に固定されたテーパファイバの位置をステージコントローラで動かすことで, ファイバの 太さを調整した.

この時点で,条件が揃っていれば,マイクロコムが発生していることとなるため,Fig.5.4 に示した残りの実験装置を用いて,観測および測定を行う.微小球共振器からの出力光 の大部分はファイバブラッググレーティングに入力するが,ファイバカプラで 99:1 に分 けたうちの1をスペクトルアナライザへ入力することで,スペクトルを同時に測定する. ファイバブラッググレーティングでは回折格子によって特定の周波数の光を取り出すこと ができるため,ポンプしたレーザの周波数成分と,非線形光学効果によって新たに生じた 周波数成分に分けることができた.最後にフォトダイオードで受光できる程度にアッテ ネータによりパワーを下げた後,オシロスコープで波形を観測した.オシロスコープで は、ポンプ光成分、コム光成分、マッハツェンダー干渉計の波形、ファンクションジェネ レータの電圧を常に表示させた.ポンプ光成分は共振周波数付近では共振器に光が入射す るため、その周波数付近ではディップとして現われる.コム光成分は非線形光学効果が発 生していない時には何も信号がない状態であるが、四光波混合や誘導ラマン散乱が生じた 場合、ポンプ光成分とは逆の動きをする信号が観測できる.

5.2.2 カップリングの工夫

本実験を開始した当初は、共振器とテーパファイバが僅かに触れる程度に調整して実験 を行った.なぜなら共振器を置いたステージの位置を上昇させ、テーパファイバと共振器 を最大限接触させると、Q 値が大幅に低下するからである.Fig. 5.5(a),(b)は、接触状態 がそれぞれ Fig. 5.5(c),(d)の場合における、オシロスコープのスクリーンショットであ る.緑色がポンプ光成分をフォトダイオードで受講した信号、青色がマッハツェンダー干 渉計の信号、橙色がファンクションジェネレータの信号を表しているが、明らかにポンプ 光で観測できる共振の線幅が太くなったことが確認できる.

Fig. 5.5 (a) Screenshot of oscilloscope when the resonator is slightly touched to the tapered fiber. The picture from a upper camera is shown in (c). (b) Screenshot of oscilloscope when the fiber and the resonator are in close contact. The picture from a upper camera is shown in (d).

しかし,このような状態では,実験中に接触具合が変動してしまうため,共振波長が動いてしまい,不安定であった.理論的には,テーパファイバと共振器の距離をさらに近づけると同時に,テーパファイバの太さを太くすることで,同じカップリング状態を実現できる.しかし実際には,接触させた瞬間に共振線幅が太くなり*Q*値が低下したため,テーパファイバの太さを変えるだけでは,調整することが不可能であった.

そこで,直径の大きい共振器に変えることで,この問題の解決を目指した.微小球共振器の直径が大きい場合,球内のより内側にモードが存在するようになるため,テーパファイバを接触させた際の影響を受けにくいことが期待できる.実際,直径 200 µm 程度の微

小球共振器から,直径 400 µm を超える大きな共振器へ変更すると,強く接触させた状態 でも高*Q* 値を保ち,安定度が改善した.

なお共振器の直径を大きくするためには,微小球の作製において,アーク放電を繰り返 し行えばよい.作製した大きなサイズの微小球共振器の例を Fig. 5.6 に示す.アーク放電 を1度行うと,先端が丸まり,ファイバ融着機の電極棒からの位置がずれてしまう.その ため,アーク放電と位置の微調整を交互に行うことによって,アーク放電の影響をファイ バの先端が受けることができるようにして,放電プロセスを繰り返した.この際,ファイ バの先端ではなく奥側に電極棒が位置するようにセットしてしまうと,そこから全体が 徐々に曲がってしまい,最終的な完成形が,完全な球ではなく垂れたような形状になって しまうため,注意が必要である.アーク放電のパワーを強くすると,作製できる共振器は さらに大きくなったが,大きさには限界があった.今回用いたファイバ融着機のパワー を最大限にしアーク放電を何度も繰り返したが,作製できる最大の直径は 500 µm 程度で あった.

Fig. 5.6 Photo of a large size microsphere resonator.

5.2.3 非線形光学効果の観測

作製した微小球共振器は Q 値が 10⁸ 前後のモードが多く存在していたため,入射パ ワーを数 10 mW まで上げると,非線形光学効果により,入力光以外の周波数成分が発生 する現象が見られた. Fig. 5.7 に例を示す. Fig. 5.7(a) ではポンプ光周波数を中心として 等間隔な位置に四光波混合によって新たな周波数成分が生成しており,チューリングロー ルの領域での様子を捉えていることが分かる.一方で Fig. 5.7(b) ではポンプ光周波数の 周辺ではなく,1600 nm 後半で新たな周波数成分が発生した.これは誘導ラマン散乱が原
因で発生するコムであり、ラマンコムと呼ばれる「^{77]}. 誘導ラマン散乱とは、光と分子の 相互作用により、入力光周波数に物質の分子振動の周波数を引いた値の周波数の光に大部 分が変換される現象のことである. 特に物質が SiO₂の場合,他の物質よりも比較的大き なラマン利得を持つことが知られており、様々な振動モードを足し合わせることで理論 的に計算できる^[78]. このラマン利得を生かして、ラマンレーザ^[79] などの応用が進む一方 で、今回のようにカーコムに着目する場合には、利得の競合が生じるためラマンコムの存 在は望ましくない. この問題を解決するためには、大きな微小光共振器を用いることによ る FSR 間隔の拡大や、パワーやカップリングなどのパラメータの調整が重要である^[77,80]. 実際 Fig. 5.7(c)、(d) に示すように、別の共振器を用いたり、テーパファイバを当てる位置 を変えたりすることで、カー利得とラマン利得のどちらの影響も受け、多数の周波数成分 が発生する状態が観測された.

Fig. 5.7 Spectrum obtained when a high power input was applied to the resonator. Various frequency components other than the input light at 1550 nm are generated.

5.2.4 ソリトン発生

ソリトンを発生させるためには,ブルーデチューニングからレッドデチューニングに遷移する必要があるため,ファンクションジェネレータの三角波の信号を参考に,短波長側から長波長側へ掃引している範囲に着目した.また,ソリトンが発生するためには,最低限コム光成分が発生していることが必要であるため,コム光成分が発生しているモードを探した.この際,スペクトルアナライザを確認することで,その非線形成分がラマン利得

由来であるか,あるいはカー利得由来であるかが判別できる.カー利得由来の四光波混合 が盛んに確認できる場合には,共振終わりで直線上に伸びるソリトンステップが観測でき た.Fig.5.8 に,その例を示す.パワーや偏波,カップリングなどを調整することにより, 10 MHz を超える比較的長いソリトンステップが観測できた.その際,波長を掃引するご とに,オシロスコープ上でステップが現れる位置が変化したため,別のモードが重なって いるだけではなく,確かにソリトンステップであることを確認した.

Fig. 5.8 Observation of a soliton step. The blue line represents pump power and the red line represents comb power.

5.2.5 シミュレーションとの違い

シミュレーションで得たコムパワーの変化と実験で得たコムパワーの変化を比較する と、ステップの長さが明らかに異なる.これは今回のシミュレーションでは考慮しなかっ た熱による影響で、Fig. 5.9 のように共振波長が長波側へシフトされることが原因である と考えられる.

膨張係数を ϵ , 導波路伝搬定数を c_1 , 共振器の屈折率を n_0 , N 番目の共振波長を λ_r と すると

$$N = \frac{2\pi r c_1 (1 + \epsilon \Delta T)}{\lambda_r / \left(n_0 + \frac{dn}{dT} \Delta T\right)}$$
(5.2.1)

Fig. 5.9 Numerical simulations and analytical solutions of the backward tuning in Si_3N_4 with and without thermal effects. [H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, "Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators," Nat. Phys. **13**, 94–102 (2017). Reproduced with permission from Springer Nature.]

という関係で結ばれるため、熱の影響が存在しない場合の共振波長 λ₀ から

$$\lambda_r(\Delta T) \simeq \lambda_0 \left[1 + \left(\epsilon + \frac{\frac{dn}{dT}}{n_0} \right) \Delta T \right]$$
 (5.2.2)

へと変化する [81].

共振器が SiO₂ の場合, $\epsilon = 0.55 \times 10^{-6} K^{-1}$, $dn/dT = 9.6 \times 10^{-6} K^{-1}$ である ^[82]. 微小光共振器に用いられるその他の材料として MgF₂ があるが, その場合, $\epsilon = 9.4 \times 10^{-6} K^{-1}$ (a 軸), $\epsilon = 13.6 \times 10^{-6} K^{-1}$ (c 軸), $dn/dT = 0.9 \times 10^{-6} K^{-1}$ (常光線), $dn/dT = 0.3 \times 10^{-6} K^{-1}$ (異常光線) である ^[82]. 従って, SiO₂ の特徴は, 熱屈折率が大きく, 熱膨張が小さいと言える.

第6部 可飽和吸収体の付与

6.1 グラフェン添加微小球共振器の作製

6.1.1 グラフェンの剥離

グラフェンは可飽和吸収体としてのみならず,ヤング率1TPaという高い強度や 10⁴ cm²V⁻¹s⁻¹ を超える電子移動度を示すなど他材料より優れた特性を数多く有してお り,「奇跡の素材」と称される^[83]. 2004 年にグラファイトに粘着力の強いテープを用いて 機械的な剥離をすることにより得られることが発見されて以来^[84],研究が飛躍的に進んで いるものの,応用化に向けては課題が多い.発見当初の方法はスコッチテープ法と呼ばれ ているが,大量生産には向いていないのである.しかしながら,本研究においては高品質 なグラフェンが簡単に作成できるため,この方法を採用した.

微小球共振器にグラフェンを添加する工程は3つに分類できる. Fig. 6.1 にフロー チャートを示す.

Fig. 6.1 Overall flow of adding a graphene to microsphere cavity.

まず,グラフェンを剥離し,PDMS への転写を行った.高配向性熱分解グラファイト をテープで挟み込み,位置をずらしながら複数回剥離を繰り返した.その結果,テープ上 には薄くなったグラファイトが広範囲に広がった状態となる.それを,ポリジメチルシ ロキサン (PDMS)のシートに転写するために,PDMSのシートを1辺が数 mm 程度と なるように切り,スライドガラスの上に貼ったものを用意した.そして,グラフェンが 付着したテープを PDMS のシートに貼り,剥がすことで,テープから PDMS へと転写し た.PDMS に付着したグラフェンを確認するためには顕微鏡を用いた.観察した結果を Fig. 6.2 に示す.この際,所望のグラフェン層がバルク状のグラフェンから孤立して存在 していることが望ましいが,後の工程の微小球共振器に付与する際に位置を調整することで,ある程度,選択的に付与することが可能である.

Fig. 6.2 (a) Graphenes on a PDMS sheet. (b) Magnified view of thin-layer graphene indicated by red circle in (a).

6.1.2 共振器への転写

Fig. 6.1 に示した工程のうち (iii) に関して説明する. これまでの手順により, グラフェンを付着させた PDMS がスライドガラスに貼られた状態となったので, これを微小球共振器へ転写する. グラフェンを付与する微小球共振器は, 新たなスライドガラスを用意し, その上に PDMS を介して固定した.

グラフェンを貼る位置は微調整する必要があるため、ステージコントローラを用いた. 微小球共振器があるスライドガラスを下側に、グラフェンがあるスライドガラスを上側と なるようにし、上側のスライドガラスの高さを徐々に下げた.グラフェンと微小球共振器 が接したかどうかは、この2枚のスライドガラスの上に設置したカメラからの画像から判 断することができた.微小球共振器にピントを合わせておくと、接した瞬間にはピントが ずれるからである.十分に距離が離れた状態で、添加するグラフェンと微小球共振器にピ ントを合わせ横方向の位置を微調整し、距離を近づけた.

接した状態でしばらく経過した後に、上側のスライドガラスを引き上げると、微小球側 にグラフェンが移る.このことを確認するため、転写前と転写後のグラフェンが付着して いた PDMS を顕微鏡で確認した.その結果を Fig. 6.3(a),(b)に示す.Fig. 6.2(b)に示し たグラフェンを共振器に転写する予定であったが、周りに存在していたグラフェンも共振 器に移ってしまった.グラフェンが微小球共振器に転写された様子は、Fig. 6.3(c)に示す ように、直接顕微鏡で確認することもできた.

Fig. 6.3 (a) PDMS sheet before graphenes were transfer to the resonator. (b) PDMS sheet after graphenes were transferred to the resonator. The graphenes in the area circled by the red frame is no longer present because theu have been transferred to the resonator. (c) Photo of the resonator. Graphene on the resonator is in focus.

6.2 特性評価

6.2.1 Q 値の変化

微小共振器にグラフェンが存在する場合,そこで散乱が生じてしまい,Q値が低下する ことが予想される.そこで Fig. 6.4 に示す実験セットアップにより,グラフェンを付与す る前後でのQ値の変化を測定した.1周期20MHzであるマッハツェンダー干渉計の信 号と共振モードの線幅を比較することでQ値を算出することができる.

Fig. 6.4 Experimental setup for Q measurement using a oscilloscope. FG: function generator. MZI: Mach–Zehnder interferometer. FPC: fiber polarization controller. PD: photo diode. OSC: oscilloscope.

先行研究によると、グラフェンの位置が共振器の球の赤道部分から 30°離れた位置と なるよう注意深く調整することで、グラフェン転写前後の Q 値がそれぞれ 2 × 10⁸ から 1.3 × 10⁸ と維持できたことが報告されている^[85].しかしながら、グラフェンを貼る位置 を精密にコントロールすることは困難であり、転写の際に角度を持たして貼り付けようと する場合,余分なグラフェンの塊が共振器に付着してしまうなど,Q値の低下を招くこと になってしまった.

ほとんどのサンプルでは全体的に Q 値が 1 桁程度低下したが,転写が成功した例を Fig. 6.5 に示す. グラフェンを付与する工程で共振器の位置をずらしたり回転させたりす るため,観測できるモードが変化することには注意が必要である. しかしながら,ほとん どのモードの Q 値が下がる一方で,元の Q 値のオーダーを維持できているモードも存在 する状態が実現できた. これはグラフェンが適切な位置に貼られ,広い面積を使って伝搬 する高次モードに強くグラフェンの効果が影響しているためであると考えられる.

Fig. 6.5 Results of Q factor measurement. (a) Before transferring a graphene. (b) After transferring a graphene.

6.3 ソリトン発生

6.3.1 一直線に伸びるソリトンステップ

Q 値をあまり低下させることなく, グラフェンを付与することができたため, グラフェ ンを付与する前と同様の Fig. 5.4 に示したセットアップにより波長掃引を行うことで, ソ リトン発生実験を行った.ただし,レーザは安定化のために,線幅が 10 kHz と,これま でのレーザよりも狭線幅のレーザ (Toptica CTL 1550) に変更した.すると非線形光学効 果に由来した新たな周波数成分が発生していることがオシロスコープ上で確認できた.そ の中に,特異な変化をするモードが現れたため,コムパワーの変化を Fig. 6.6 に示す.こ の時の掃引速度は 2 MHz/μs であった.なおこの図では,波長掃引を 20 回行った結果を 重ねて描いており,掃引するごとに共振の位置がずれたため,共振が見え始める位置をす べて揃えて表示している.

今回観測されたステップは高いパワーで維持されており,ソリトン状態に遷移する前の 傾きを維持したまま直線状に伸び続けた.グラフェンを付与していない場合,カオスな状

Fig. 6.6 Transition of comb power in a cavity with a graphene. The results of 20 wavelength sweeps are overlaid on one another. Since the position of the resonance shifted with each sweep, the positions at which the resonance began to appear are all aligned.

態を経た後にパワーが大きく減少しソリトン状態に遷移するため,そのような通常のソリ トンとは異なった挙動である.シミュレーションでは,パーフェクトソリトンクリスタル が生成する場合,パワーが激しく変動する領域を全く経由せず直線状に伸びた.しかし, 可飽和吸収体の変調深さなどのパラメータを変えて行ったシミュレーション結果,例えば Fig. 4.6 では,パワーの揺れが生じた後にそのままパワーが増加し続けた.実験で得られ た Fig. 6.6 のコムパワーの変化の仕方は,熱の影響などによりソリトン領域が減少してし まうことを考慮すると,このシミュレーション結果とよく一致していることが分かる.

6.3.2 ソリトンステップの評価

Fig. 6.6 で現れたステップの時に,共振器内部がどのようになっているかを判断するためには,ちょうどステップが存在する所で波長を止める必要がある.そして,光スペクトルアナライザを観測し,FSR の整数倍ずつ離れるスペクトルが得られた場合,確かにパーフェクトソリトンクリスタルであると証明できる.そこで実験セットアップを Fig. 6.7 に示すように改変した.これまでは,ファンクションジェネレータで三角波を出力していたが,この方法では波長を止めることはできない.そこで代わりに任意波形発生器を用いて,電圧が V₁ から V₂ へと変化し,V₂ のまましばらく保たれる波形を出力することにした.

Fig. 6.7 Experimental setup for soliton generation using power kicking method. AWG: arbitrary waveform generator. EDFA: erbium-doped fiber amplifier. MZI: Mach–Zehnder interferometer. AOM: acousto-optical modulator. FPC: fiber polarization controller. OSA: optical spectrum analyzer. FBG: fiber Bragg grating. ATT: attenuator. PD: photo diode. OSC: oscilloscope.

さらに、パワーキック法^[86]を取り入れた.これは音響光学変調器によって波長掃引が 終わる瞬間にポンプパワーを瞬間的に減少させ、再び一気にポンプパワーを上げるという 操作を行う手法である.まずポンプパワーの減少によって、共振波長が短波長側へ戻り レッドデチューニングとなるため、ソリトン状態に遷移する直前であった状態からソリト ン状態へと遷移する.そしてソリトン状態では、再びポンプパワーを上昇させることで、 ソリトンの存在できる波長範囲が増加し、ソリトンステップを長くすることができる.

しかし、これらの手法を適用するには問題があった.それは共振モードが波長に追従し て動かないことである.パワーキックを使うことでソリトン領域を伸ばしたとしても、そ のモードが波長掃引の終わりに位置していなければ掃引が続くため、ソリトン解から外れ てしまう.共振モードを動かす最も単純な方法は、レーザの中心周波数を変えることであ るが、そうした場合においても共振モードの位置は変わらず、ある一定の波長を超えたと ころでそのモードが急速に掃引範囲から消える挙動を示した.これは掃引範囲に複数の モードが存在していることが原因で熱的に安定化してしまっているが、あるモードが消え るとその平衡が崩れ、一気に観測できるモードが変わっているのだと考えられる.微小球 共振器は単純な構造ゆえにモードが多くなることは仕方がない.今後の展望として、カッ プリング条件の微調整や共振器の大きさを工夫してなるべくモードを減らす、もしくはト ロイド共振器のようなモードの少ない共振器に変更するなどが考えられる.

第7部

結論

本研究では可飽和吸収体を用いてパーフェクトソリトンクリスタルを発生させる手法を 提案した.数値解析と実験の両輪で研究を進めたが,得られた結果や今後の展望に関して 以下にまとめる.

可飽和吸収効果を考慮した数値解析

微小光共振器中の光の伝搬を計算する際に用いられる方程式として Lugiato-Lefever 方 程式が知られている.本研究では微小光共振器に可飽和吸収体を付与することを想定し, その項を追加した式を立てた.そして現実的なパラメータを用いてシミュレーションを 行った結果,可飽和吸収効果を考慮した場合のみパーフェクトソリトンクリスタルが発生 することを明らかにした.

パーフェクトソリトンクリスタルの発生条件に関する考察

可飽和吸収効果を考慮することによってパーフェクトソリトンクリスタルが発生する原 理は、直感的には以下のように考えられる.まず変調不安定性により、周期的なチューリ ングロールと呼ばれる波形に連続波が変化する.通常の可飽和吸収効果がない場合、ここ から激しく波形が乱れるカオス状態となるのだが、可飽和吸収効果がある場合、カオスな 成分が湧き上がるのを吸収し防ぐことができるため、カオスな状態を経由せずに、ソリト ン形成に必要なレッドデチューニング状態に遷移し安定化する.この推察が正しいのかを 確かめるために、デチューニング量や共振器の分散、可飽和吸収体の変調深さが与える影 響を調べた.さらに回復時間を考慮した可飽和吸収体の計算モデルへと改良し、その影響 に関しても考察した.

パーフェクトソリトンクリスタルの発生に向けた実験

実験では,光ファイバの先端をアーク放電することで,高*Q*値な微小球共振器を作製 した.非線形光学効果により,入射光とは異なる様々な周波数成分が発生する現象を確認 した後,ソリトンの発生実験を行った.カップリング条件を工夫することで,ソリトンス テップの観測に成功した.

可飽和吸収体の付与

可飽和吸収体としてグラフェンを用いることに決めたため、まずグラファイトから粘着 力の高いテープを用いてグラフェンを剥離し、共振器に転写した.グラフェンの付与によ り、共振器のQ値が著しく低下してしまう場合もあったが、貼る位置を工夫することで非 線形光学実験に十分なQ値を維持することに成功した.そして、その共振器に高パワー の光を短波長側から長波長側へ掃引しながら入射すると、シミュレーションとよく一致す るコムパワーの遷移を確認した.

今後の展望

可飽和吸収体を付与した微小光共振器で発生した特異なコムパワーの遷移に関して,そ の時の共振器内部の様子の詳細な議論のためには、ソリトン発生領域で掃引波長を止め安 定化させることが必要不可欠である.具体的には共振モード数が少ない状態を実現し、パ ワーキック法などを用いてソリトンステップを伸ばし、フィードバックによってソリトン 状態を維持できる.

また,可飽和吸収体の影響がどの程度効いているかを確認することも重要である.入力 パワーを変えたときの*Q*値の変化などを測定することで,可飽和吸収効果を測定できる ため,それらの結果をシミュレーションと比較すれば,本研究は更に発展すると考える.

Appendix

ロッド共振器の作製と評価

ロッド共振器は SiO₂ で作製可能な微小光共振器の1つである. 微小球共振器やトロイド共振器と比較すると, 共振器長が大きく FSR が小さくなるという特徴を持つ. 結晶共振器などで用いられる切削加工によっても作製可能であるが, 今回は CO₂ レーザを用いる手法で作製した. そのための実験セットアップの概略図を Fig. 7(a) に示す.

Fig. 1 (a) Schematic illustration of the experimental setup for fabricating a rod resonator. (b) Schematic illustration of silica rod irradiated by a CO_2 laser.

CO₂ レーザの光はアッテネータを経てパワーが調整された後,金ミラーで反射され, ZnSe レンズに入射し,石英棒に照射される.ここで,ミラーで2回反射させる理由は, 設置スペースの都合によるものである.CO₂ レーザの波長は 10.6 mm であり,SiO₂ が 高い吸収性を示す波長帯と一致しているため,レーザを当てることで加工することができ る.Fig.7(b) に示すように,石英棒をスピンドルで回転させながらステージコントローラ で位置を動かすことで,共振器を成形した.まず,直径 6 mm の石英棒を軸出しするため に全体的に削り,その後共振器を作製したい位置の上下に深い溝を掘ることで作製した.

作製した共振器の特性を Fig. 7 に示す. 波長掃引した結果である Fig. 7(a) からは等間 隔に深いディップが存在することが分かるが,その間隔からこの共振器の FSR は 21 GHz であり,直径は最終的に 3.2 mm であると考えられる. また, Q 値は Fig. 7(b) にフィッ ティングした結果, 9.7×10^7 と算出された.

Fig. 2 (a) Transmission spectrum measured by a wavelength scan. (b) Spectrum with a lorentzian fitting, resulting in a quality factor of 9.7×10^7 .

参考文献

- F. Schlawin, D. M. Kennes, and M. A. Sentef, "Cavity quantum materials," Appl. Phys. Rev. 9, 011312 (2022).
- [2] C. Lemieux-Leduc, R. Guertin, M.-A. Bianki, and Y.-A. Peter, "All-polymer whispering gallery mode resonators for gas sensing," Opt. Express 29, 8685–8697 (2021).
- [3] D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature **421**, 925–928 (2003).
- [4] P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg,
 "Optical frequency comb generation from a monolithic microresonator," Nature 450, 1214–1217 (2007).
- [5] D. Kwon, D. Jeong, I. Jeon, H. Lee, and J. Kim, "Ultrastable microwave and solitonpulse generation from fibre-photonic-stabilized microcombs," Nat. Commun. 13, 1–8 (2022).
- [6] S. Honari, S. Haque, and T. Lu, "Fabrication of ultra-high Q silica microdisk using chemo-mechanical polishing," Appl. Phys. Lett. **119**, 031107 (2021).
- [7] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, "Temporal solitons in optical microresonators," Nat. Photonics 8, 145–152 (2014).
- [8] W. Wu, Q. Sun, Y. Wang, Y. Yang, X. Ming, L. Shi, K. Wang, W. Zhao, and L. Wang, "Mid-infrared broadband optical frequency comb generated in MgF₂ resonators," Photon. Res. **10**, 1931–1936 (2022).
- [9] X. Xu, X. Jin, H. Gao, H. Ye, D. Chen, Y. Lu, and L. Yu, "Detuning regulation of temporal solitons in a CaF₂ microcavity," J. Opt. 23, 125501 (2021).
- [10] A. Hasegawa and F. D. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion," Appl. Phys. Lett. 23, 142–144 (1973).
- [11] G. Agrawal, Nonlinear Fiber Optics (Elsevier Science, 2013), 5th ed.
- [12] M.-G. Suh and K. J. Vahala, "Soliton microcomb range measurement," Science 359, 884–887 (2018).
- [13] J. Riemensberger, A. Lukashchuk, M. Karpov, W. Weng, E. Lucas, J. Liu, and T. J. Kippenberg, "Massively parallel coherent laser ranging using a soliton microcomb,"

Nature 581, 164–170 (2020).

- [14] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, "Microresonator-based solitons for massively parallel coherent optical communications," Nature 546, 274–279 (2017).
- [15] B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, "Ultra-dense optical data transmission over standard fibre with a single chip source," Nat. Commun. 11, 2568 (2020).
- [16] A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, "High-order coherent communications using mode-locked dark-pulse kerr combs from microres-onators," Nat. Commun. 9, 1–8 (2018).
- [17] Z. Budrikis, "Microresonator astrocombs," Nat. Rev. Phys. 1, 15–15 (2019).
- [18] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, "Universal dynamics and deterministic switching of dissipative kerr solitons in optical microresonators," Nat. Phys. 13, 94–102 (2017).
- [19] J. A. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. E. Leaird, and A. M. Weiner, "Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region," Opt. Express 23, 9618–9626 (2015).
- [20] Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, "Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators," Optica **3**, 1132–1135 (2016).
- [21] C. Bao, Y. Xuan, D. E. Leaird, S. Wabnitz, M. Qi, and A. M. Weiner, "Spatial modeinteraction induced single soliton generation in microresonators," Optica 4, 1011–1015 (2017).
- [22] Z. Xiao, K. Wu, T. Li, and J. Chen, "Deterministic single-soliton generation in a graphene-FP microresonator," Opt. Express 28, 14933–14947 (2020).
- [23] H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, "Soliton formation in whispering-gallery-mode resonators via input phase modulation," IEEE Photonics J. 7, 1–9 (2015).
- [24] D. C. Cole, J. R. Stone, M. Erkintalo, K. Y. Yang, X. Yi, K. J. Vahala, and S. B. Papp, "Kerr-microresonator solitons from a chirped background," Optica 5, 1304–1310 (2018).

- [25] D. C. Cole, E. S. Lamb, P. Del'Haye, S. A. Diddams, and S. B. Papp, "Soliton crystals in Kerr resonators," Nat. Photonics 11, 671–676 (2017).
- [26] M. Karpov, M. H. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, "Dynamics of soliton crystals in optical microresonators," Nat. Phys. 15, 1071–1077 (2019).
- [27] X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, "Normaldispersion microcombs enabled by controllable mode interactions," Laser Photon. Rev. 9, L23–L28 (2015).
- [28] T. Huang, J. Pan, Z. Cheng, G. Xu, Z. Wu, T. Du, S. Zeng, and P. P. Shum, "Nonlinearmode-coupling-induced soliton crystal dynamics in optical microresonators," Phys. Rev. A 103, 23502 (2021).
- [29] Z. Lu, Y. Wang, B. Zhao, M. Liu, and W. Wang, "Perfect soliton crystal in a microcavity via sub-harmonic phase-modulation scheme," Jpn. J. Appl. Phys. 59, 060903 (2020).
- [30] Z. Lu, H.-J. Chen, W. Wang, L. Yao, Y. Wang, Y. Yu, B. E. Little, S. T. Chu, Q. Gong, W. Zhao, X. Yi, Y.-F. Xiao, and W. Zhang, "Synthesized soliton crystals," Nat. Commun. 12, 1–7 (2021).
- [31] H. Ahmad, N. F. Azmy, N. F. Norisham, S. A. Reduan, and M. Z. Zulkifli, "Thuliumdoped fluoride mode-locked fiber laser based on nonlinear polarization rotation," Opt. Quantum Electron. 54, 1–11 (2022).
- [32] N. Zhang, Q. Song, J. Zhou, J. Liu, S. Liu, H. Zhang, X. Xu, Y. Xue, J. Xu, W. Chen, Y. Zhao, U. Griebner, and V. Petrov, "44-fs pulse generation at 2.05 μm from a SESAM mode-locked Tm : GdScO₃ laser," Opt. Lett. 48, 510–513 (2023).
- [33] S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Laser mode locking using a saturable absorber incorporating carbon nanotubes," J. Lightwave Technol. **22**, 51 (2004).
- [34] L. Qiu and F. Ding, "Understanding single-walled carbon nanotube growth for chirality controllable synthesis," Accounts Mater. Res. **2**, 828–841 (2021).
- [35] B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, "Gate-tunable frequency combs in graphene–nitride microresonators," Nature 558, 410–414 (2018).
- [36] B. Zhang, J. Liu, C. Wang, K. Yang, C. Lee, H. Zhang, and J. He, "Recent progress in 2D material-based saturable absorbers for all solid-state pulsed bulk lasers," Laser Photon. Rev. 14, 1900240 (2020).
- [37] Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, "Black phosphorus as saturable absorber for the Q-switched Er : ZBLAN fiber laser at 2.8 μm," Opt. Express

23, 24713–24718 (2015).

- [38] L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. Weingarten, and U. Keller, "Compact Nd : YVO/sub4/ lasers with pulse repetition rates up to 160 GHz," IEEE J. Quantum Electron. 38, 1331–1338 (2002).
- [39] Y. Ma, X. Zhu, L. Yang, M. Tong, R. A. Norwood, H. Wei, Y. Chu, H. Li, N. Dai, J. Peng, J. Li, and N. Peyghambarian, "Numerical investigation of GHz repetition rate fundamentally mode-locked all-fiber lasers," Opt. Express 27, 14487–14504 (2019).
- [40] W. Wang, W. Lin, H. Cheng, Y. Zhou, T. Qiao, Y. Liu, P. Ma, S. Zhou, and Z. Yang, "Gain-guided soliton: Scaling repetition rate of passively modelocked Yb-doped fiber lasers to 12.5 GHz," Opt. Express 27, 10438–10448 (2019).
- [41] A. Martinez and S. Yamashita, "Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes," Opt. Express **19**, 6155–6163 (2011).
- [42] B. E. A. Saleh, 基本光工学 (森北出版, 東京, 2008).
- [43] M. Liu, H. Huang, Z. Lu, Y. Wang, Y. Cai, and W. Zhao, "Dynamics of dark breathers and raman-kerr frequency combs influenced by high-order dispersion," Opt. Express 29, 18095–18107 (2021).
- [44] I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica," J. Opt. Soc. Am. 55, 1205–1209 (1965).
- [45] S. Fujii and T. Tanabe, "Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation," Nanophotonics 9, 1087– 1104 (2020).
- [46] L. A. Lugiato and R. Lefever, "Spatial dissipative structures in passive optical systems," Phys. Rev. Lett. 58, 2209 (1987).
- [47] C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, "Stability analysis of the spatiotemporal lugiato-lefever model for kerr optical frequency combs in the anomalous and normal dispersion regimes," Phys. Rev. A 89, 063814 (2014).
- [48] P. Parra-Rivas, D. Gomila, M. A. Matías, S. Coen, and L. Gelens, "Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs," Phys. Rev. A 89, 1–12 (2014).
- [49] M. Johansson, V. E. Lobanov, and D. V. Skryabin, "Stability analysis of numerically exact time-periodic breathers in the Lugiato-Lefever equation: Discrete vs continuum," Phys. Rev. Res. 1, 1–9 (2019).
- [50] Z. Qi, S. Wang, J. Jaramillo-Villegas, M. Qi, A. M. Weiner, G. D' Aguanno, T. F.

Carruthers, and C. R. Menyuk, "Dissipative cnoidal waves (turing rolls) and the soliton limit in microring resonators," Optica **6**, 1220–1232 (2019).

- [51] Z. Qi, A. Leshem, J. A. Jaramillo-Villegas, G. D' Aguanno, T. F. Carruthers, O. Gat, A. M. Weiner, and C. R. Menyuk, "Deterministic access of broadband frequency combs in microresonators using cnoidal waves in the soliton crystal limit," Opt. Express 28, 36304–36315 (2020).
- [52] G. P. Agrawal, "Nonlinear fiber optics" (Academic Press, Amsterdam, 2013), 5th ed.
- [53] T. Kumagai, N. Hirota, K. Sato, K. Namiki, H. Maki, and T. Tanabe, "Saturable absorption by carbon nanotubes on silica microtoroids," J. Appl. Phys. 123, 233104 (2018).
- [54] T. S. P. Suzuki, A. Nakashima, K. Nagashima, R. Ishida, R. Imamura, S. Fujii, S. Y. Set, S. Yamashita, and T. Tanabe, "Design of a passively mode-locking whispering-gallerymode microlaser," J. Opt. Soc. Am. B 38, 3172–3178 (2021).
- [55] H. J. Chen, Q. X. Ji, H. Wang, Q. F. Yang, Q. T. Cao, Q. Gong, X. Yi, and Y. F. Xiao, "Chaos-assisted two-octave-spanning microcombs," Nat. Commun. 11, 1–6 (2020).
- [56] E. Lucas, H. Guo, J. D. Jost, M. Karpov, and T. J. Kippenberg, "Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative kerr solitons in optical microresonators," Phys. Rev. A 95, 043822 (2017).
- [57] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, "Soliton frequency comb at microwave rates in a high-Q silica microresonator," Optica 2, 1078–1085 (2015).
- [58] S. Wabnitz, "Suppression of interactions in a phase-locked soliton optical memory," Opt. Lett. 18, 601–603 (1993).
- [59] X. Xue, P. H. Wang, Y. Xuan, M. Qi, and A. M. Weiner, "Microresonator Kerr frequency combs with high conversion efficiency," Laser Photon. Rev. 11, 2–5 (2017).
- [60] M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, "Mode-locked midinfrared frequency combs in a silicon microresonator," Optica 3, 854–860 (2016).
- [61] V. Torres-Company, D. Castelló-Lurbe, and E. Silvestre, "Comparative analysis of spectral coherence in microresonator frequency combs," Opt. Express 22, 4678–4691 (2014).
- [62] M. Haelterman, S. Trillo, and S. Wabnitz, "Additive-modulation-instability ring laser in the normal dispersion regime of a fiber," Opt. Lett. 17, 745–747 (1992).
- [63] G. Sobon, A. Duzynska, M. Świniarski, J. Judek, J. Sotor, and M. Zdrojek, "CNTbased saturable absorbers with scalable modulation depth for thulium-doped fiber lasers operating at 1.9 μm," Sci Rep 7, 1–9 (2017).

- [64] E. Lucas, M. Karpov, H. Guo, M. Gorodetsky, and T. J. Kippenberg, "Breathing dissipative solitons in optical microresonators," Nat. Commun. **8**, 1–11 (2017).
- [65] F. Kurtner, J. der Au, and U. Keller, "Mode-locking with slow and fast saturable absorbers-what's the difference?" IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
- [66] S. Yamashita, A. Martinez, and B. Xu, "Short pulse fiber lasers mode-locked by carbon nanotubes and graphene," Opt. Fiber Technol. 20, 702–713 (2014).
- [67] M. Liu, L. Wang, Q. Sun, S. Li, Z. Ge, Z. Lu, C. Zeng, G. Wang, W. Zhang, X. Hu, and W. Zhao, "Influences of high-order dispersion on temporal and spectral properties of microcavity solitons," Opt. Express 26, 16477–16487 (2018).
- [68] R. Imamura, "高利得 Er 添加微小光共振器の作製と光学特性," Master's thesis, Keio University (2021).
- [69] I. Rammaru, "超高繰り返しパルス光源開発に向けた微小光共振器と CNT の結合と 評価," Master's thesis, Keio University (2020).
- [70] H. Tavernier, P. Salzenstein, K. Volyanskiy, Y. K. Chembo, and L. Larger, "Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications," IEEE Photonics Technol. Lett. 22, 1629–1631 (2010).
- [71] X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, "Active capture and stabilization of temporal solitons in microresonators," Opt. Lett. **41**, 2037–2040 (2016).
- [72] N. Volet, X. Yi, Q.-F. Yang, E. J. Stanton, P. A. Morton, K. Y. Yang, K. J. Vahala, and J. E. Bowers, "Micro-resonator soliton generated directly with a diode laser," Laser Photon. Rev. 12, 1700307 (2018).
- [73] J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, and S. B. Papp, "Thermal and nonlinear dissipative-soliton dynamics in kerr-microresonator frequency combs," Phys. Rev. Lett. **121**, 063902 (2018).
- [74] M.-G. Suh, C. Y. Wang, C. Johnson, and K. J. Vahala, "Directly pumped 10 GHz microcomb modules from low-power diode lasers," Opt. Lett. 44, 1841–1843 (2019).
- [75] S. Zhang, J. M. Silver, L. Del Bino, F. Copie, M. T. Woodley, G. N. Ghalanos, A. Ø. Svela, N. Moroney, and P. Del' Haye, "Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser," Optica 6, 206–212 (2019).
- [76] T. Tan, Z. Yuan, H. Zhang, G. Yan, S. Zhou, N. An, B. Peng, G. Soavi, Y. Rao, and B. Yao, "Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator," Nat. Commun. 12, 8–15 (2021).

- [77] S. Fujii, T. Kato, R. Suzuki, A. Hori, and T. Tanabe, "Transition between kerr comb and stimulated raman comb in a silica whispering gallery mode microcavity," J. Opt. Soc. Am. B 35, 100–106 (2018).
- [78] D. Hollenbeck and C. D. Cantrell, "Multiple-vibrational-mode model for fiber-optic raman gain spectrum and response function," J. Opt. Soc. Am. B **19**, 2886–2892 (2002).
- [79] X. Shen, H. Choi, D. Chen, W. Zhao, and A. M. Armani, "Raman laser from an optical resonator with a grafted single-molecule monolayer," Nat. Photonics **14**, 95–101 (2020).
- [80] Y. Okawachi, M. Yu, V. Venkataraman, P. M. Latawiec, A. G. Griffith, M. Lipson, M. Lončar, and A. L. Gaeta, "Competition between raman and kerr effects in microresonator comb generation," Opt. Lett. 42, 2786–2789 (2017).
- [81] T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behavior and thermal selfstability of microcavities," Opt. Express 12, 4742–4750 (2004).
- [82] G. Lin and Y. K. Chembo, "On the dispersion management of fluorite whisperinggallery mode resonators for kerr optical frequency comb generation in the telecom and mid-infrared range," Opt. Express 23, 1594–1604 (2015).
- [83] K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene," Nature 490, 192–200 (2012).
- [84] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666–669 (2004).
- [85] T. Tan, Z. Yuan, H. Zhang, G. Yan, S. Zhou, N. An, B. Peng, G. Soavi, Y. Rao, and B. Yao, "Multispecies and individual gas molecule detection using stokes solitons in a graphene over-modal microresonator," Nat. Commun. 12, 1–8 (2021).
- [86] X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, "Active capture and stabilization of temporal solitons in microresonators," Opt. Lett. 41, 2037–2040 (2016).