
Abstract

The ever-increasing demand for telecommunications is calling for higher transmission
speeds and enhanced encryption techniques, including chaos secure communication.
In contrast to the rising number of studies of chaos synchronization on different plat-
forms, there is a lack of experimentally synchronizing modulation instability combs in
microring resonators.

The chaotic behavior inside the resonators is studied by utilizing the Lugiato-Lefever
equations to simulate the optical fields. Additionally, the synchronization of two cas-
caded microring resonator is analyzed by varying parameters such as the injection
factor between the rings or introducing noise during transmission. To experimentally
validate the simulation results, two microring-resonators fabricated on the same chip
were used to lessen potential fabrication errors.

The simulation revealed not only a dependence of the degree of synchronization on
multiple parameters but also a high robustness against noise in the transmission chan-
nel. In contrast to the simulation, the experimental results demonstrate the difficulty
to synchronize chaotic microring-resonators as the correlation between both resonators
remains low. A formula was introduced that revealed that synchronization between
the resonators could not be achieved experimentally. This formula can serve future
researchers as a lower bound indicator to measure whether a synchronization of two
chaotic signals could have been achieved.

In summary, while chaos synchronization remains a challenge experimentally, this
work offers valuable insights into the synchronization of microring resonators and paves
the way for further advances in this line of research.



Abstract

要要要旨旨旨

電気通信の需要が高まっている今日においては、通信速度の向上やカオスセキュ

ア通信を含む暗号技術の発展がますます求められる。 しかし、マイクロチップ

レーザーや電子回路など、さまざまなプラットフォームを使ってカオスを同期さ

せる研究成果が増加しているのとは対照的に、マイクロ共振器にある変調不安定

光周波数コムを実験的に同期させる研究成果はほとんどないのが現状である。

ここではLugiato-Lefever方程式を利用した光場のシミュレーションを行うこと
で、共振器内部にあるカオスのふるまいを分析する。 また、２つのマイクロ共振

器をカスケード接続することによって、通信ノイズや伝送係数のパラメーターが

カオスの同期にどの程度影響を及ぼすのか解析する。 シミュレーション結果を実

験的に検証するため、１つのチップの上に複数製造したマイクロ共振器を使うこ

とで、製造過程のばらつきによる影響を減らすことを試みた。

結果として、シミュレーションでは混入した伝送路上のノイズが強い場合にお

いても、カオスの同期ができることが明らかとなった。また、伝送係数などのパ

ラメーターを変更することによってカオスの同期の程度が変わることが分かっ

た。 その一方、実験では２つの共振器の相関係数が弱かったため、マイクロ共振

器の同期が困難であることが示された。 しかしこれにより、マイクロ共振器の同

期が実験的には達成できなかったことを示す公式が得られた。 この公式は、将来

的に、マイクロ共振器の相関係数を測るうえで、カオスの同期が達成できたかど

うかを示す下限指標となるだろう。

この研究を通して、マイクロ共振器におけるカオスの同期に関する貴重な知識

を提供する。
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1 Motivation

Demands on telecommunications are increasing. Alongside an increasing amount of
users and devices using the internet arises a demand for higher transmission speeds.
This requires a higher transmission bandwidth. In order to comply with this demand
different techniques are used, but high energy costs and large footprints motivate a
search for new approaches. It was found that optical frequency combs (OFCs) could
also be used for large broadband high-speed transmission. OFCs are light sources
which emit light waves at wavelengths which are equidistant to each other, enabling
a cost-effective method to multiplex a signal and increase the effective transmission
bandwidth. While they reduce the energy consumption they still have a large foot-
print and a small repetition rate. In 2007, generation of an optical frequency comb
in a microresonator was demonstrated. These so-called microcombs enable wavelength
division multiplexing on the integrated photonics chip. Because of their small size they
are able to generate chaotic waveforms.

Chaos-Secure Communication

One of the comb stages of the optical frequency is called a modulation instability (MI)
comb. This MI comb emits a chaotic signal. The chaotic nature of this signal makes it
quasi-random and therefore suitable for applications that require randomly generated
numbers. The quasi-randomness of chaotic signals makes them particularly interesting
for secure communications in cryptography. While there is a rising amount of re-
search on the usage of synchronized chaotic sources to encrypt and decrypt data, there
is a lack of reports about experimentally synchronized MI combs in microresonators.
Realizing synchronization would allow high-speed transmission with encryption and
secure communications. This thesis provides valuable contributions to this goal. First,
synchronization of microresonators has been simulated. Furthermore, the chaotic be-
havior has been analyzed. Lastly, experiments have been conducted that try to prove
the simulation results.





2 Theory

To introduce the main ideas, concepts and contents of this thesis, this chapter pro-
vides the theory and serves as a review of recent development. First, optical frequency
combs (OFC) in their generality are introduced. Then, the view is focused on mi-
croresonator optical frequency combs (microcombs), and how OFCs are generated in
microresonators. Since one of the microcombs states exhibits chaotic behavior, an un-
derstanding of chaos is brought. Finally, chaos synchronization and its applications in
secure communication are reviewed.

2.1 Optical Frequency Combs

A little over two decades ago, optical frequency combs (OFCs) were invented. Their
orignal purpose was to count the cycles from optical atomic clocks, but as research
progressed their applicability was increased.

With the begin of the 21st century, two groups independently demonstrated the
actualization of OFCs. In 1999, Hänsch et al used a mode locked laser (MLL) as an
OFC to conduct optical frequency measurements [1]. In the same year, the group
around Hall measured an OFC, too [2]. This and their life-long contribution in the
field of optical metrology resulted in them both receiving the nobel prize in physics in
2005 [3, 4].

The generation of OFCs is traditionally done by stabilizing the phase of an MLL as
it was realized that MLLs are applicable in optical metrology [5]. The light pulses from
MLLs are a coherent addition numerous longitudinal optical cavity modes, which lead
to them being advantageous for two key reasons:

1. The optical modes are evenly spaced in frequency, thus harmonically related.

2. All optical modes share a common phase evolution, meaning they are phase-
coherent.

Knowing only one mode by its absolute frequency allows to determine the absolute
frequency of any other mode. This deterministic behavior is described by a carrier
frequency νc = ωc/(2π) which is modulated by a periodic pulse envelope, A(t). Because
of the periodicity of the pulses, describing the light as a periodic Fourier series of the
optical modes, νN = ωN/(2π), with Fourier amplitude, AN , and mode number, N , is
also possible.



2 Theory
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Figure 2.1: Spectrum of an Optical Frequency Comb

E(t) = A(t)eiωct =
Nf∑

N=Ni

ANeiωN t (2.1)

But as the carrier frequency does not have to be a multiple of the mode spacing, fr,
the individual Fourier frequencies are shifted. They are shifted by an offset, f0 ≤ fr,
from a multiple of fr, resulting in the so called comb equation:

fN = f0 + Nfr (2.2)

The comb equation 2.2 states that even though numerous optical modes are present
in an OFC, they are all determined by just two degrees of freedom, which are the
repetition rate, fr, and the offset frequency, f0. The repetition rate (fr) is the inverse
of the time period between two pulses, Tr. As pulses are emitted from the cavity once
per round trip the pulse repetition period equals to Tr = 2L/vg. Where vg is the
group velocity of the light inside the cavity and L the cavity length. By changing the
cavity length, the pulse-repetition rate, Tr, is adjusted. The offset frequency (f0) is the
difference between the carrier wave and the envelope of the pulse. It also represents
the harmonic and coherent connection between laser modes as every longitudinal laser
mode shares a common phase. With other words, the offset frequency is a measure of
coherence. Therefore, it is also related to the derivative of the optical carrier phase
relative to the pulse envelope, ϕCEO(t).

f0 = 1
2π

dϕCEO

dt
(2.3)

It is important to note, that in order to obtain precise results in optical metrology
or spectrology, both parameters have to be determined. Without knowing the offset
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2.1 Optical Frequency Combs

frequency, the measured frequency is only determined with a precision of ±fr.

Applications of the OFC go already beyond the originally intended utility of im-
proving atomic clocks. Utilizing fiber networks, atomic clocks can be compared with
high precision [6] and shows the advantages of OFCs. Employing OFCs over fiber
networks also enabled to remotely control lab-equipment with a facility-wide timing
better than 30 fs [7]. Besides timing, synchronization and comparison applications,
simply using them as an oscillator is also feasible. Especially when using an OFC to
divide the optical frequency to the microwave regime showed the ability to generate
them with low-noise [8]. Moreover, OFCs are used to improve the frequency calibra-
tion of astronomical spectrographs and are currently in multiple telescopes around the
world employed [9, 10]. These spectrographs measure Doppler shifts of steller spectra
to determine the composition of solar atmospheres and radial velocities of celestial
bodies. Using OFCs as so called "astrocombs" enables improvement of the calibrations
so that the telescopes are able discern cm/s level drifts in the measured Doppler shifts.
Furthermore, utilizing optical frequency combs in light detection and ranging (LiDAR)
applications was demonstrated quickly after the first OFCs were realized [11]. When
using an OFC for LiDAR, employing not one but two OFCs in a dual-comb setup is
beneficial for reducing the resolution from millimeter-range down to even nanometer-
ranges [12]. Dual-comb setups can also be used for spectrography applications with
linear optical sampling (LOS) measurements [13]. Utilizing LOS of the two combs with
slightly offset repetition rates enable the down-conversion terahertz in the optical band-
width down to megahertz in the RF domain, which makes it possible to reconstruct
optical molecular absorption spectra.

As time progresses and research is done, the OFC-system tend to shrink in size, mak-
ing them compacter and more viable, aiming to photonically integrate OFC sources
[14, 15]. There are different ways to generate OFCs, but when it comes to semiconduc-
tor lasers, different platforms have been investigated, including mode-locked integrated
external-cavity surface-emitting lasers (MIXSELs) [16, 17] and quantum cascade lasers
(QCLs) [18, 19]. When MIXSELs are optimally pumped, they can provide femtosecond-
pulses with an output power grater than 1 W. They can be engineered to work between
800 nm and near-infrared (IR) wavelengths. QCLs on the other hand offer the genera-
tion of mid-IR to terahertz radiation with variable mode-spacings. Their special feature
is that QCL-combs do not produce optical pulses and are currently the only platform
with direct electrical pumping. Furthermore, Electro-optic (EO) comb generators are
employed to create OFCs [20]. They are currently the only source with wide-band and
fast tuning of the mode spacing. There are also high-speed EO-modulators with pump
wavelengths between 780 nm and 2 µm. One of the EO-combs was even used to cal-
ibrate an astronomical spectrograph [21]. Another way to generate optical frequency
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combs, is to use microresonators. The generated OFCs, or also microcombs, differ in
their operation from MLLs because they are not lasers, but only optical resonators.
Microcombs were first demonstrated based on suspended silica micro-toroids [22, 23]
and later in fused-quarz micro-rods [24], and . In the context of microcombs, microres-
onators act as build up cavities with high photon lifetimes, enabling high-nonlinearity
through long-interaction lengths. Using four-wave mixing. a comb is generated by
a single-frequency pump source that is resonantly coupled. Most of the research re-
garding microcombs was dedicated to understand the dynamics of generation a soliton
source. This process of producing optical solitons is now fairly well understood and
can by realized by systematic and careful control of the pump laser detuning [25, 15].

First, the optical frequency comb was created in order to increase the accuracy of
atomic clocks, but over the time a great amount of additional applications was found,
as the OFC becomes smaller, compacter and better understood. The microcomb is
progressively getting more attention and is especially of great interest for this thesis.

2.2 Microresonator Optical Frequency Combs

As highlighted in the previous chapter, generation of optical frequency combs in mi-
croresonators, microcombs, have become more popular over the past two decades.
Their small scale and with that the compactness makes viable for implementation into
chip-scale photonic systems. Being made on a small-scale means also that the light is
confined in a small physical volume, resulting in strong confinement of light, where the
nonlinear effects are enhanced, aiding the broadening of the comb spectrum. Further-
more, they can achieve comb generation for relatively low input powers.

In other words, microcombs stand out because of their small size, compatibility with
CMOS and integrability onto photonic circuits, enhanced confinemnet of light and less
energy consumption.

This section is dedicated to microcombs. First, microresonators in general are re-
viewed, with a focus on whispering-gallery mode (WGM) microresonators. That focus
is then further specified on microring resonators which are subject to this thesis, review-
ing its characteristics and fabrication technique. Then, the theory behind the processes
needed for comb generation inside of microresonators is shown, namely the effect of
the third nonlinearity, the Kerr effect and the dispersion, which enable four-wave mix-
ing (FWM) and generating microcombs. After introducing the different generatable
comb stages, a closer look into the chaotic modulation instability (MI) combs and their
applications is taken.
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2.2 Microresonator Optical Frequency Combs

2.2.1 Microresonators

Microresonators gained interest since the previous century, leading to numerous dif-
ferent forms and shapes of microresonators [26, 27]. Systems based on optical micro-
cavities were already substantial for applications like frequency stabilization, optical
filtering and switching, cavity-quantum-electro-dynamic experiments, biosensing, light
generation, and nonlinear optics. These resonators fabricated in a wide range of mate-
rials have radii from 1 to 100 µm. They trap light in their small physical volumes by
processes such as almost total internal reflextion or distributed Bragg reflection. This
confined light enables light amplification, and selection of specific frequencies of light
that can be emitted or coupled into optical waveguides. Since microring resonators are
subject to this study, whispering-gallery mode (WGM) resonators are presented in the
following part.

WGM resonators, ring, rod, sphere

In 1909, RWTH Aachen University graduate and Nobel prize winner, Peter Debye,
laid out the groundwork for an understanding of how electromagnetic waves respond
to small spheres, especially those smaller than the wavelength of the light [28]. While he
was not aware of whispering-gallery modes (WGM) at that time, his paper contributed
to a better understanding on how resonances and thus WGM modes propagate in
microresonators. But it was not until a year later, when Lord Rayleigh coined the
concept of whispering-gallery modes, when he investigated acoustic whispering galleries
[29, 30]. He studied how sound waves travel along the walls and ceilings in places like
St. Paul’s Cathedral, where whispers from the other side of the cathedral can be heard
if one puts one ear close to the wall.

The concept of WGMs was brought to optical waves with contributions from Mar-
catili, who investigated bends in optical dielectric guides and how they behave in a
closed loop [35]. Until the end of the 20th century different forms and shapes of WGM
resonators were demonstrated, with a choice of resonators shown in Fig. 2.2. In table

Resonator Microsphere Microtorus Microdisk Racetrack
Q-factor 107 − 9 × 109 5 × 108 104 − 105 850-1000

Table 2.1: Q-factors for the different types of microresonators as of 2006 [26]

2.1, the respective approximate Q-factor value can be seen. Starting with microspheres
2.2a, they exhibited the highest Q-factors 107 − 9 × 109, but are difficult to integrate
on a chip because of their shape. Then, the microtorus 2.2b, it stood out because of its
similar high Q-factors around 5 × 108, while being suitable for integration on a chip.
Moreover, microdisks 2.2c showed still high Q-factors, 104 − 105, while being smaller

7
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(a) Microsphere [31] (b) Microtorus [32]

(c) Microdisk (microring) [33]
(d) Quadrupolar (racetrack)

microresonator [34]

Figure 2.2: A choice of different WGM microresonators developed around 2000

than microtorii, their mode volume is also smaller and they are suitable for planar in-
tegration. Finally, quadrupolar (racetrack) microresonators 2.2d are able to efficiently
couple to planar waveguides, but their Q-factors are even lower, 850-1000. This is also
due to the fact, that the racetrack resonators are not pure WGM resonators but are
also supporting bow-tie modes.

Resonance Frequencies, Roundtrip Time, Electrical Field

In the previous section a comparison of different types based on their Q-factors took
place, without motivating what the Q-factor is. Therefore, the Q-factor along other
characteristic values of the microresonator, specifically the microring resonator, are

8



2.2 Microresonator Optical Frequency Combs

introduced in the following sections. Since microring resonators have been studied for
multiple decades, a lot of information can be acquired from textbooks, e.g. [36].

Typically, a microring resonator consists out of a looped waveguide along with a
coupling mechanism enabling the access to it. As the waves propagate within the
microring resonator and accumulate a phase shift equivalent to an integer multiple of
2π, constructive interference occurs, leading to resonance within the cavity. To put
this into an equation, let ωm be equivalently spaced resonance frequencies given by:

ωm = mc

neffR
(2.4)

mλm = 2πneffR, (2.5)

where ωm is the angular frequency of the m-th longitudinal mode, while λm is the
corresponding wavelength, neff is the effective index of the mode, and R is the radius
of the ring. As the phase shift of the resonant modes equals an integer multiple of 2π

after each round-trip, the round-trip time TR is multiplied by the angular resonance
frequency,

ωmTR = m2π. (2.6)

To get an ample equation for the round-trip, insert 2.5 into 2.6,

TR = m2π

ωm

(2.7)

= m2π
mc

neffR

(2.8)

= 2πneffR

c
(2.9)

= neffL

c
(2.10)

where L = 2πR is the circumference of the microresonator, the length the light travels
in one round-trip. Furthermore, the free-spectral range (FSR) can be introduced, also
illustrated in Fig.2.3. The FSR is the separation of successive resonances, so it is
directly obtained by the difference of two successive resonances:

FSRfrequency = ωm+1 − ωm = 2π

TR
(2.11)

= 2πc

Lneff
(2.12)

Or when translated into wavelength,

FSRwavelength = λ2
0

neffL
(2.13)

9



2 Theory

where λ0 is the free-space wavelength, is obtained. Furthermore, when looking at figure
2.3, the resonance width ∆ω is visible, which is just the full-width at the half maximum
of the resonance.

ωm-1 ωm ωm+1

FSR

∆ω

ω

Figure 2.3: Resonances of a Microresonator

Finally, the internal optical field A(z, t) can be written as

A(z, t) = A0 exp(i(kz − ωmt)), (2.14)

where A0 is the amplitude and k = 2πm/L is the propagation constant.

Quality Factor and Finesse

A popular way to compare different microring resonators is by looking at their quality
factor (Q) next to other values [37]. The following derivation is based on [36]. To define
the Q-factor, one has to know that it is a measure of the sharpness of the resonance
with respect to its central frequency. When putting this into an equation, it can be
seen that it is the ratio of the stored energy in the resonator to the energy lost per
round trip:

Q = ω0
Stored energy

Power loss . (2.15)

The stored energy is given by the squared amplitude of the previously defined optical
intrinsical field A0, |A0|2. But, since the power loss depends on the time, the transient
process is evaluated. Let a resonator be loaded with an intensity of |A0|2, after the
charging process the pump is turned off, so that the resonator loses its energy. To
derive a differentiable function for the energy, consider the intensity after the n-th
round-trip:

|An|2 = exp(−αdisL)|An−1|2 (2.16)
= exp(−nαdisL)|A0|2 (2.17)

10



2.2 Microresonator Optical Frequency Combs

where αdis is the distributed loss in the resonator. After each round-trip the intensity
of the previous round-trip is attenuated by a factor exp(−αdisL). Let n be large enough
to declare this relation a continuous variable and it can be derived with respect to n,
which is indirectly a measure of time, because each round-trip takes TR. The power
loss can be directly evaluated to:

d|An|2

dn
= −αdisL|An|2 (2.18)

d|An|2

dt
= 1

TR

d|An|2

dn
= −αdisL

TR

|An|2 (2.19)

Since the power loss has to be positive value by definition, the derived term has to be
negated before inserted into 2.15. Finally,

Q = ω0
|A0|2

−d|An|2
dt

(2.20)

= ω0TR

αdisL
(2.21)

With the resonance width of ω0, which can be defined as:

∆ω = αdisL

TR

, (2.22)

the common formal form of the Q-factor is usually defined as

Q = ω0

∆ω
= λ0

∆λ
. (2.23)

A similar measure is the finesse, which is defined as the ratio of FSR and resonance
width,

Finesse = FSR
∆ω

. (2.24)

Therefore, the Finesse is the measure of the sharpness of resonances relative to their
spacing. Both, the finesse and Q-factor have a physical meaning, namely they are
proportial to the number of round-trips that can be made with the energy stored in
the resonator. In detail, their meanings differ by a bit. The finesse is approximately the
number of round-trips the light inside the cavity can make until its energy is depleted
to 1/e of its initial value. In contrast to that, the Q-factor represents the number of
oscillations the field inside the resonator can make until its energy is reduced to 1/e.

Since there are different definitions of the Q-factor [38, 39, 40, 41], and they are
usually defined for the uncoupled case, consider the following as the definition used in
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this thesis:

Q−1
load = Q−1

rad + Q−1
scatter + Q−1

cont + Q−1
mat + Q−1

coup (2.25)
= Q−1

int + Q−1
coup, (2.26)

where Q−1
rad are the radiative losses; Q−1

scatter the scattering losses due to surface inho-
mogeneities; Q−1

cont losses due to contaminants on the surface of the resonator; Q−1
mat the

material losses and Q−1
coup the losses because of coupling. The unloaded Q-factor is here

called intrinsic Q-factor Q−1
int . When talking about the loaded Q-factor, the coupled

resonator is meant, and also the Q-factor that is measured in the experiment, when
measuring the resonances center wavelengths and the resonance width.

Similarly to the Q-factor, the different losses in the resonator can be summarized to:

γ = γrad + γscatter + γcont + γmat + γcoup (2.27)
= γint + γcoup. (2.28)

Coupling Mode Theory applied to Waveguide and Resonator

Utilizing the coupling mode theory [42, 43, 36], the coupling between waveguide and
resonator can be shown [44, 45]. Assuming waveguide and the microring resonator are
physically close enough, meaning the gap between the edge of the resonator and the
waveguide is short enough, coupling between supported modes is feasible.

A1 A2

A0 τint

τcoup

Figure 2.4: Coupling between ring and waveguide

Consider the schematic shown in 2.4, which shows the basic coupling relation between
microring resonator and a waveguide. The incident field A1, the transmitted field A2

and the circulating field inside the resonator A0 are related with the intrinsic decay
rate, τ−1

int , and the coupling rate, τ−1
coup by the following equations. First, let the time

variation of the circulating mode, A0, be as follows [43]:

dA0(t)
dt

= −
( 1

2τ
+ iω0

)
A0(t) + 1

√
τcoup

A1(t) exp(−iω1t) (2.29)
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2.2 Microresonator Optical Frequency Combs

where ω1 is the frequency of the incident light and τ−1 = τ−1
int + τ−1

coup is the total
loss rate in the cavity. To determine the detuning between incident light and the
resonating mode in the resonator, a phase transformation is applied, namely A0(t) =
A0(t) exp(iω1t). And the previous equation is reformulated as,

dA0(t)
dt

=
(

i(ω1 − ω0) − 1
2τ

)
A0(t) + 1

√
τcoup

A1(t). (2.30)

In this formulation the detuning, ω1 − ω0, can directly be evaluated. Furthermore, let
the transmitted field A2(t) be defined as,

A2(t) = 1
√

τcoup

A0(t) − A1(t). (2.31)

The transmission factor is now derived by analyzing the steady-state, when the time
variation of the intracavity field disappears, dA0(t)

dt
= 0:

A0 = 1
√

τcoup

1
i(ω1 − ω0) − 1

2τ

A1 (2.32)

|A0|2 = 1
τcoup

1
(ω1 − ω0)2 + 1

4τ2
|A1|2 (2.33)

Now, to evaluate the transmission factor, consider the ratio from output to input is
calculated in the case of no detuning, ω1 = ω0,

T = Pout

Pin
=
∣∣∣∣A2

A1

∣∣∣∣2 =
(

τint − τcoup

τint + τcoup

)2

(2.34)

According to equations from Bogaerts [41] and Spillane [44], a derivation of the
coupling factor K is presented. They show that the transmission in the steady state
can be expressed as

T =
(1 − K

1 + K

)2
(2.35)

where K is the coupling parameter, which can be defined as

K = 1 ±
√

T

1 ∓
√

T
. (2.36)

The upper signs are taken, when the resonator is over-coupled and the lower signs
are taken when the resonator is under-coupled. In the critically coupled case, the
transmission vanishes, K = 1. As the transmission T is defined as the transmission
when the detuning equals 0, this equation can also be used to determine the coupling
factor in the experiment. Furthermore, when comparing equations 2.34 and 2.35 , the
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Figure 2.5: Resonances for different coupling factors

coupling factor can also be defined as,

K = τcoup

τint

. (2.37)

In figure 2.5, the three different cases of coupling are presented. From left to right,
the under coupled, critically coupled and over coupled cases are shown, which depend
on the previously defined coupling factor K.

• Under coupling Qint < Qcoup, K < 1 (τ−1
int > τ−1

coup): When the coupling rate is
smaller than the intrinsic decay rate, less light is coupled in and as a result there
is more transmitted light than light from the cavity at the output.

• Critcal coupling Qint = Qcoup, K = 1 (τ−1
int = τ−1

coup): When the coupling rate
equals the intrinsic decay rate, there is no transmitted light behind the resonator,
since all the light is coupled into the resonator. While the amplitude of the
transmitted field is the same as the amplitude as the field that came back from
the resonator, a resonance shift of π between both occurs.

• Over coupling Qint > Qcoup, K > 1 (τ−1
int < τ−1

coup): As the coupling rate is higher
than the intrinsic decay rate, more light is coupled into the cavity than before,
resulting in a majority of the output signal being from the cavity and not directly
transmitted from the incident source.

Fabrication of Silicon Nitride Ring resonators

To fabricate the microresonators are technique called the photonic Damascene process
is used [46]. In Fig. 2.6, the fabricated chip can be seen. On the left 2.6a, the structures
on the chip are visible in a close-up. On the right 2.6b, the packaged chip is depicted
which makes adressing the waveguides leading to the resonators easier.

2.2.2 Comb Generation

It was found out that microresonators are also feasible for optical frequency comb gen-
eration, leading to multiple groups investigating the so-called microcomb generation[23,
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2.2 Microresonator Optical Frequency Combs

(a) Fabricated Chip (b) Packaging around the chip

Figure 2.6: Used chip in the experiments

22, 47]. A conclusive paper about microcombs and the dynamics of temporal solitons in
microresonators was published in 2014 by Herr et al [25]. The fundamentals to under-
stand why this microcomb generation is even feasible have to be motivated before. For
the following explanations the textbook titled "Nonlinear Fiber Optics" by Govind P.
Agrawal is used [48]. Microcombs are also called Kerr frequency combs, because one of
the effects that is necessary for microcomb generation is the inherent Kerr effect in the
microcavities. With the Kerr nonlinearity and the dispersion of the microresonator, the
optical field inside the cavity can be described by the Lugiato-Lefever equation which
is exemplified later in the simulation chapter 3. The actual comb generation happens
then because of an effect called four-wave mixing (FWM). At last the Thermo-Optic
effect is shortly introduced because of its importance in the experimental part.

Optical Kerr Effect

While the principle of Kerr frequency combs is applicable to any type of optical res-
onator, the requirement for Kerr frequency comb generation is the pump laser field
intensity is above the parametric threshold of the nonlinear process. Which is easier
to fulfill inside a microresonator because of the low losses inside microresonators (and
corresponding high quality factors) and because of the microresonators’ small mode
volumes. The optical nonlinearities refered to become visible when the polarization of
a dielectric material scales nonlinearly. Induced by the electrical field, here, electro-
magnetic waves, the polarization changes dependent on the intensity of the input light.
Usually, the polarization is linear as the electrical, or rather the optical field, E(z, t),
is too small to generate a significant nonlinear effect. Therefore, a common way to
characterize the polarization, P (z, t), is by neglecting the nonlinearities altogether,

P = ϵ0χE, (2.38)
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where ϵ0 is the vacuum permittivity and χ the electrical susceptibility. A general
definition, that includes all terms, is given by

P = ϵ0(χE + χ(2)E2 + χ(3)E3 + . . . ), (2.39)

where the terms χ(2) and χ(3) denote the second- and third-order susceptibility, respec-
tively. Since fibers are usually made from silica and the resonators used in this thesis
are made from silicon nitride, Si3N4, the second-order nonlinearity vanishes because
of their centrosymmetry [49]. That leaves the nonlinearity to the third-order suscep-
tibility. Higher-order susceptibilities are neglected, because their effect is marginal
compared to the third-order nonlinearity. The lowest-order nonlinear effects in silica
glass and silicon nitride originate from this third-order susceptibility χ(3) which is also
responsible for phenomena such as the optical Kerr effect and four-wave mixing. Thus,
the nonlinear polarization is described as,

PNL = ϵ0χ
(3)E3. (2.40)

Most above mentioned nonlinear effects originate from nonlinear refraction, the phe-
nomenon that the refractive index is intensity dependent. Written in its simplest form,
the refractive index looks like this:

ñ(ω, |E|2) = n(ω) + n2|E|2, (2.41)

where n(ω) is the linear part, which is commonly known and |E|2 is the optical intensity.
n2 is the second-order nonlinear-index coefficient that is proportional to χ(3).

3χ(3)

4ϵ0cn2
0

(2.42)

The two most widely studied nonlinear effects due to the intensity change of the refrac-
tive index are called self-phase modulation (SPM) and cross-phase modulation (XPM).
SPM describes the phase shift which is self-induced after propagating through an op-
tical fiber of a length L.

ϕ = ñk0L = (n + n2|E|2)k0L, (2.43)

where k0 = 2πλ. The second addend describes the intensity-dependent nonlinear
phase-shift which is due to the SPM:

ϕNL = n2k0L|E|2. (2.44)
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Figure 2.7: Dispersion in a microresonator

In contrast to SPM, XPM refers to the nonlinear phase shift of an optical field due
to another optical field with a different wavelength, direction, or state of polarization.
Consider the total electric field for two optical fields with different frequencies ω1 and
ω2, polarized along the z axis, propagate at the same time,

E = 1
2 ẑ[E1 exp(−iω1t) + E2 exp(−iω2t) + c.c.]. (2.45)

Then, the nonlinear phase shift for the optical field with the frequency ω1 is expressed
by:

ϕNL = n2k0L(|E1|2 + 2|E2|2), (2.46)

where other frequencies than ω1 and ω2 are neglected. On the right-hand side (RHS)
of Eq. 2.46, the terms are a result of SPM and XPM, respectively. Important to note,
the effect of XPM is twice the effect of SPM when both fields of different frequencies
are of similar intensity.

Dispersion

Another important characteristic of the microresonator which enables microcomb gen-
eration is the dispersion, which consists out of two contributions, the material disper-
sion and the geometry dispersion. The material dispersion can be calculated when
approximating the refractive index with the Sellmeier equation. But the geometry
dispersion has a stronger effect in waveguides and microring resonators.

In contrast to the material dispersion which depends on the refractive index, the
geometry dispersion originates from the propagation constant in the resonator which
is wavelength-dependent. The resonance frequencies for an arbitrary mode µ are given

17



2 Theory

in a Taylor-expanded form as:

ωµ = ω0 + D1µ + 1
2D2µ

2 + 1
6D3µ

3 + . . . (2.47)

where ωµ is the frequency of the resonance mode, ω0 is the frequency of the center
mode, Di are the dispersion coefficients and µ the mode number. D1 is a directly
related to the physical dimensions of the resonators, as it is the FSR multiplied by 2π,
FSR = D1

2π
, or in terms of the round-trip time, TR =

(
D1
2π

)−1
. Figure 2.7 exemplifies

the above Eq. 2.47. Higher-order dispersion coefficients are usually neglected because
of the exponential decrease of their influence, D2 ≫ D3 ≫ . . . . D2 is next to D1 a
coefficient of relevance, because the sign determines the kind of dispersion.

• D > 0 means anomalous dispersion

• D < 0 denotes normal dispersion

Furthermore, it is common to express the dispersion with the group velocity dispersion
β2:

β2 = −nD1

cD2
1

. (2.48)

Thus, the dispersion inside microresonators is an important parameter that can to
be tuned in order to adjust the behavior or the shape of the microcomb.

Thermo-Optic Effect

Not only the dispersion, but also the temperature can shift the resonances [50, 51].
While the dispersion depends mainly on the resonators geometry, which usually does
not change a lot during use, the temperature does change dramatically depending on
the input pump power.

The resonance wavelength can be analyzed with respect to the temperature and an
equation can be extracted[51]:

λr(∆T ) = λ0

[
1 +

(
ϵ +

dn
dT

n0

)
∆T

]
(2.49)

= λ0(1 + a∆T ). (2.50)

λ0 is the cold cavity resonance-wavelength, ϵ is the expansion coefficient of the cavity,
dn
dT

is the refractive index temperature coefficient and ∆T is the temperature difference
between the mode volume and the surrounding. Furthermore a factor a is introduced
for simplicity. This factor a can then be calculated for different materials, where a > 0
for many optical materials including silica and Si3N4. Because of the positive sign of
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Figure 2.8: (a) Thermal Drift of the resonance wavelength, (b),(c) and (d) three differ-
ent equilibrium states

ω1

ω1

ω3

ω4

(a) Degenerate FWM

ω1

ω2
ω3

ω4

(b) Non-degenerate FWM

Figure 2.9: Energy diagrams Four-Wave Mixing

the coefficient a the resonance wavelength is shifted to a higher wavelength when the
temperature inside the cavity rises because of the increased coupling the nearer the
pump wavelength comes to the resonance wavelength, depicted in Fig. 2.8. Due to this
shifting of the resonance wavelength to higher values, when the pump wavelength is
also increased, the resonator is passively stabilizing itself, when the pump wavelength
is smaller than the resonance wavelength (blue-detuned), b) in Fig. 2.8. In the other
case, when the pump wavelength is already longer than the resonance wavelength (red-
detuned), the field inside of the cavity is prone to thermal instability, c) in Fig. 2.8.

Four-Wave Mixing

Four-wave mixing (FWM) can be understood as one of the key mechanism to generate
a microcomb as its important for creating the first stage of the comb [52, 53]. In
FWM two photons are annihilated and again created, where it is differentiated between
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Figure 2.10: Numerical simulations of soliton formation in a microresonator from [25]

two main concepts, degenerate and non-degenerate FWM. In the following equations
the energy-equilibriums of the degenerate and the non-degenerate FWM processes are
described,

2ℏω1 = ℏω3 + ℏω4 (degenerate) (2.51)
ℏω1 + ℏω2 = ℏω3 + ℏω4 (non-degenerate) (2.52)

where ωi are the different frequencies the photons are created and annihilated, ℏ is
Planck’s constant. The processes are also depicted in Fig. 2.9. On the left 2.9a, two
photons with the same frequency, ω1, are annihilated and two photons with different
frequencies, ω3 and ω4, are generated, which is called degenerate FWM. On the right
2.9b, two photons with different frequencies, ω1 and ω2, are annihilated and two photons
with different frequencies, ω3 and ω4, are generated, which is called non-degenerate
FWM. It is important to note that the phases need to be matched.

2.2.3 Modulation Instability Comb

The dynamics of the generation of microcombs was first extensively studied by Herr
et al. in 2014 [25]. In Fig. 2.10, the results of a numerical analysis of the generation
of microcombs in microresonators is depicted. There are different stages, which all
occur during the sweep of the pump wavelength. Shown in figure (a) is the average
intracavity power with respect to the laser detuning. As the pump wavelength is swept
from smaller to longer wavelengths, the intracavity power also changes. First, in the
red-detuned regime, when the pump wavelength is smaller than the effective resonance
wavelength, the power rises until the pump wavelength matches the effective resonance
wavelength. In figure (b) and figure (c) the corresponding optical spectra and temporal
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waveforms are shown for the respective points marked in figure (a). It starts with a
Turing pattern comb which gets more chaotic and evolves into an MI comb in point
(IV). Beyond this point, the microresonator moves into the blue-detuned regime, where
first a multi-soliton comb can be seen, which reduces to a single-soliton comb, by further
tuning of the pump wavelength.

Out of all the different stages, the one of interest for this thesis is the MI comb, as
it shows chaotic behavior and can thus be used for multiple applications. Especially
from last year, the interest in modulation instability microcombs seems to be increased
in the photonic community. First, Lukashchuk et al. and Chen et al. idependently
from each other were able to implement LiDAR systems based on MI microcombs,
which outperform traditional ones [54, 55]. Using MI microcombs and their quasi-
random signals opens the door to randomly generate bits and use the randomness for
computing, e.g., decision making, Monte-Carlo simulations, etc.. Shen et al. were able
to achieve a random bit generation rate of 3.84 Tbit s−1 and solved up to 256-armed
bandit problems with one MI microcomb [56]. The random bit generation rate can
further be increased, when using a microresonator with an even smaller FSR, e.g., to
approximately 10 Tbit s−1 [57].

One of the unrealized applications the authors of the above mentioned papers started
talking about, is the synchronization of two chaotic microcombs and the consequently
chaos secure communication.

2.3 Chaos

One might already have heard of the so-called "butterfly-effect", which is a term that
was coined in chaos theory but finds itself in common media because of its simple
interpretation. One of the most famous talks by Lorenz about the unpredictability of
complex systems, or more specifically when trying to predict the weather, is probably
"Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in
Texas?" [58]. The butterfly in the "butterfly-effect" plays the metaphorical role of the
initial conditions of a complex system and states that even the smallest and seemingly
most insignificant changes in the initial conditions can change the outcome of an chaotic
system. Research efforts are summarized in textbooks [59], there are even books for
non-mathematical people [60].

2.3.1 Fundamentals

As already motivated by the "butterfly-effect" chaos is very sensitive to its initial con-
ditions and might seem random, even though chaos is a deterministic phenomenon.
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Therefore, it is a hot research topic since the last century, where significant progress
has been made regarding the theory of chaos, which is summarized in multiple text-
books. Chaos can be described by the Lorenz equations:

ẋ = σ(y − x) (2.53)
ẏ = rx − y − xz (2.54)
ż = xy − bz, (2.55)

where σ, r, b > 0 are parameters. This three-dimensional system was derived by
Edward Lorenz in 1963 [61], when he studied to predict the weather. Even though, he
derived these equations for the nonlinear flow of convection rolls, the same model can
also be applied to lasers or dynamos. While it looks like a simple deterministic system,
it can have tremendously peculiar dynamics, where the system oscillates irregularly,
which never repeats exactly, but always remains within boundaries. There are two
important concepts when it comes to chaos

• Stretching

• Folding,

which both describe the chaotic system. Stretching is responsible for the sensibility to
initial conditions, meaning successive points are moving apart from each other. The
folding process is responsible for keeping the boundaries of the complex set, where a
point that was stretched before is folded back to a different part of the complex set.
These two processes can be compared two kneading a dough, where one also usually
stretches and folds the dough until its kneaded thoroughly enough. In this example,
the dough-particles are thus behaving chaotically.

Strange Attractor

When plotting the trajectories of the Lorenz equations in three dimensions, these points
resolve into a complex set, that is now called a strange attractor. When analyzing the
chaos of a system this strange attractor might give feedback on the degree of chaos
of the system. Staying with Lorenz for this, the famous Lorenz attractor is depicted
in Fig. 2.11a, which coincidentally looks like a butterfly. Another example of the
motion of the three-dimensional plotted in 3 dimensions for another set of equations is
shown in Fig. 2.11b. The equations which this system is based upon are named after
Rössler who derived them in 1976 [62]. The Rössler attractor shows clearly how the
folding process can be understood, because in the strange attractor a flap in z-direction
(upwards) can be seen that is folded upon the other parts of the strange attractor.
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(a) Lorenz Attractor from [63] (b) Rössler Attractor from [64]

Figure 2.11: Example Strange Attractors

There is a number of different strange attractors which differ from the Lorenz and
Rössler attractors, but they have all in common, that quasi-random points settle onto
a complex set, which is evolving to a strange attractor over time. It is important to
note, that measuring a chaotic system and plotting it in three dimensions might not
yield a strange attractor because the systems is observed from the outside without
knowing the exact model inside.

Lyapunov Exponent

A more quantitative way of analyzing the chaos in a system is to characterize it by the
Lyapunov exponent. It is also a measure for the earlier mentioned stretching process.
In other words, it measures the speed of growth of the infinitesimally close distance
between two initially close states:

F t(x0 + ϵ) − F t(x0) ≈ ϵeλt (2.56)

The left-hand side (LHS) of the equation is describing the distance between two initially
close points x0 and x0 + ϵ at time step t. The RHS is assuming exponential growth of
the distance between both points, where λ is the Lyapunov exponent when measured
for a long time, which is ideally t → ∞. Now, based on this Lyapunov exponent the
stretching of a system can be determined, because depending on the sign in from of
the exponent, the behavior of the system is described to:

• λ < 0: Small changes are not growing indefinitely, meaning the system will
eventually become periodic.
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• λ > 0: Small changes are growing indefinitely over time, which means that the
points are stretched apart from each other.

Important to note, the Lyapunov effect only gives information about the stretching of
a system but not its folding.

To bring Eq. 2.56 into a computable form, solve for λ:

eλt ≈ |F t(x0 + ϵ) − F t(x0)|
ϵ

(2.57)

λ = lim
t→∞,ϵ→0

1
t

log |F t(x0 + ϵ) − F t(x0)|
ϵ

(2.58)

= lim
t→∞,ϵ→0

1
t

log
∣∣∣∣∣dF

dx

∣∣∣∣∣
x=x0

. (2.59)

In order to calculate the Lyapunov exponent for discrete time systems xt+1 = F t(xt),
when the time-discrete system started with x0,

λ(x0) = lim
t→∞

1
t

t−1∑
i=0

log
∣∣∣∣∣dF

dx

∣∣∣∣∣
x=xi

, (2.60)

can be used. Which is quite simple to implement into a simulation but might by hard
to evalualate in an experiment, because of derivative of the function F (x) is needed,
which is not exactly measurable.

Bifurcation Diagram

Another way of visualizing chaos of a complex system is by utilizing a bifurcation
diagram. An example is shown in Fig. 2.12, where a simple nonlinear equation, the
logistic map is shown [65].

xn+1 = rxn(1 − xn) (2.61)

On the horizontal axis, the bifurcation parameter r is shown. The bifurcation diagram
depicts the forking of the periods of stable points, where this doubles with each bifur-
cation. When investigating the intervals of successive intervals between bifurcations,
the ratio of the distances converges to the Feigenbaum constant [66], which is defined
as:

δ = lim
n→∞

rn−1 − rn−2

rn − rn−1
= 4.669 . . . . (2.62)

It was generally shown that all chaotic systems which correspond to a one-dimensional
map with a single quadratic maximum, bifurcate at that bifurcation speed. Thus,
calculating the Feigenbaum can yield insights on the chaotic behavior of a system.
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Figure 2.12: Bifurcation Diagram of the Logistic Map

2.3.2 Synchronization

Chaos synchronization goes back to the 17th century when Huygens found out, that
two chaotic oscillators could be synchronized by coupling them, which coincides with
the maths behind it. As seen above, a chaotic system possesses a positive Lyapunov
exponent, meaning that the distance between two initially close points will always be
stretched out. While it might be possible to set the initial conditions to be exactly the
same in a computer simulation, in reality this will never be possible, because as moti-
vated earlier, even an infinitesimal change in the initial conditions yields completely dif-
ferent trajectories. Therefore, a form of coupling is crucial, when synchronizing chaos.
This was shown when chaos synchronization was first really understood in 1990 by Pec-
ora and Carroll [67], where they showed the synchronization of two three-dimensional
chaotic systems, when the second one is coupled to the first on. In particular, they
showed how it is feasible to drive the second source only be one variable of the leader
system and the other two variables would start to follow the untransmitted variables of
the first chaotic source. Despite chaos synchronization being achieved, full theoretical
understanding has not been established yet.

Instead, the focus lies on the synchronization of chaotic systems and applications,
therefore the concept of synchronizing two chaotic sources is reviewed [68]. In Fig. 2.13,
the general idea of chaos synchronization is presented. A leader-follower configuration
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Figure 2.13: General Idea of Chaos Synchronization

is utilized, where the chaotic signal from the transmitter is input into the receiver.
But utilizing the whole chaotic signal is uninteresting as one also wants to transmit an
encrypted signal. Luckily, as Pecora and Caroll showed before, it is not needed to use
the complete chaotic signal to achieve chaos synchronization between the leader and
follower system. So, only a part of the chaotic signal is transmitted, and the follower
system is adjusting itself to the leader system.

Consider a chaotic transmitter system, which is described by the vector variables u

and v. This chaotic system is then split into two subsystems, which are then defined
as f(u, v) and g(u, v) to describe the nonlinearities in the system.

du

dt
= f(u, v) (2.63)

dv

dt
= g(u, v) (2.64)

As both subsystems depend on each other, they are mutually coupled. Furthermore,
it is assumed that the output of the chaotic system, u and v, is chaotic. The receiver
system on the other hand consists only of one of the subsystems:

dw

dt
= f(w, v). (2.65)

Before the transmitter is sending a signal to the receiver, the vector variable v is treated
as a constant vector. Although the subsystem is described as a nonlinear function, it
does not require the output of the receiver system to be oscillating chaotically, meaning
before the transmitters signal is received the receiver might as well behave like a periodic
oscillator. Even if the receiver is behaving chaotically and the output w is oscillating
chaotically, it will never follow the same chaotic signal of u, without a signal from
the transmitter. However, when a portion of the output from the transmitter, here
v, is sent to the receiver, both, the transmitter and receiver are synchronizing, so
that the u and w show the same signals. But they are only synchronizing under the
correct circumstances, meaning the right choice of subsystems and the correct setting of
parameters, like the power to drive the receiver system, etc. To prove synchronization,
one can compute the Lyapunov exponent for the difference of the outputs u and w.
When the maximum of this conditional Lyapunov exponent is negative, both signals
are moving closer to each other and are eventually going to travel on exactly the same
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trajectory[69].

Common Approaches to Prove Chaos Synchronization

Synchronization of chaos in laser systems is increasingly shown since the year 2000.
Especially the synchronization of chaos in semiconductor lasers has seen a lot of pub-
lications over the years, since it was one of the first systems to be synchronized [70].
The synchronization distance and the chaos bandwidth are both increased. Last year,
2023, the synchronization of semiconductor laser over a distance of 1040 km was shown
utilizing fiber relays with hybrid amplification [71].

There are also reports about the synchronization of chip-scale microchip lasers [72].
Uchida et al. showed the synchronization in microchip lasers and proposed a few
different schemes to secure data transmission with chaos synchronization.

When validating chaos synchronization, two concepts are usually used, chaos attrac-
tors and simply the correlation between both chaotic sources. Chaos attractors can
show synchronization when being similar, but in some cases, the chaos attractor analy-
sis might be inconclusive. The most common way to show chaos synchronization is by
calculating the cross correlating between both chaotic sources, and a usual minimum
threshold value is 90% which is said to be sufficient for chaos secure communication
applications. Furthermore, the temporal chaotic waveforms can be plotted with respect
to each other, so that the degree of synchronization is not only quantitatively but also
qualitatively shown, where a perfect synchronization would mean all data points align
perfectly diagonally. While the use of the Lypunov exponent and bifurcation diagram
was motivated above, the publications which actually investigate these parameters are
scarce.

The most common systems to synchronize laser chaos in, are based on semiconductor
laser, microchip lasers, and also on photonic integrated circuits (PIC).

2.4 Chaos Secure Communication

As the demand for high-speed and broadband data transmissions increases and more
efficient technologies are developed, great difficulties arise. One of them is the problem
of security. Usually, the clear data is encoded by computer software, e.g. the RSA
(Rivest–Shamir–Adleman) algorithm, which security is determined by the difficulty of
calculations necessary to crack the encoded message. While the RSA algorithm for
example is sufficiently secure for today’s computer standards, the rapid development
in computer technology is said to soon be able to produce machines which are capable
of decoding such digitally encoded messages. One could increase the complexity of
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the calculations needed for normal encoding and decoding, so that the complexity
to decipher the message without the key is also complicated, but this would have
a negative impact on real-time data transmission as the time to process the data is
increased. In order to make the encoding more complex, quantum communication
protocols are being developed, e.g. Quantum key distribution. However, they are
still facing a lot of challenges. Another candidate to increase the complexity for the
increasing amount of data being transferred is chaotic communication.

2.4.1 Approaches and State of the Art

Chaotic communication techniques can be divided into two kinds, digital and analogue
encryption. The digital encryption technique is a software-based encryption technique,
but the keys used to encrypt the signals are generated by chaotic sources. When
both transmitter and receiver possess a similar chaotic source and are synchronized,
so that the generated chaos is the same in both locations, a key can be generated
from the chaotic sequence. To make the key more difficult to guess for a third party,
further improvements can be made, e.g. by using random bit generators and both
sides to randomly modulate the generated chaotic waveforms [73, 74]. The randomly
generated bits to modulate the chaos signal can then be sent over the public channel.

On the other hand, analogue techniques present themselves as a method which could
possibly achieve higher encryption and decryption speeds, because there is no limiting
digital component. The three basic analogue encryption techniques are called chaos
masking (CMA), chaos modulation (CMO), and chaos shift keying (CSK), and are
explained in the following sections. While each technique can be verified by laser rate
equations, these sections will highlight the general idea about each approach.

Chaos Masking

Chaos masking (CMA) is an approach where the clear signal is hidden in the chaotic
signal, or rather it is masked. As seen in Fig. 2.14, a chaotic source is generating a signal
x(t), in which a message signal c(t) is embedded, by adding the message to the chaotic
signal. The encoded signal, x(t) + c(t) is transmitted to the receiver side, where it is
injected into a second chaotic source, which is controlled exactly the same parameters
as the first chaotic source. By synchronization, the second chaotic source is generating
the same chaotic signal as the source on the transmitter side x(t). Simply subtracting
the generated signal from the transmitted signal, results in obtaining the sent message
c(t). The expression for the transmitted signal clearly shows that there is a constraint
for the message in terms of its intensity. Is the message signal too intense, or rather
has a higher amplitude than the chaotic signal, the message signal is not hidden in the
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Figure 2.14: General Concept of Chaos Masking

chaos. Therefore, for secure data communication, the power of the message signal is
usually chosen to be smaller than 1% of the power of the chaotic signal. To reduce the
amount of misidentified bits, the synchronization has to be sufficiently high, where a
common minimum threshold is set at a synchronization coefficient, or cross correlation,
of at least 90%.

While utilizing the CMA approach for chaos communication is now common, it has
not started until after the year 2000, [75]. One of the most famous and most often
cited papers regarding CMA, was published by Argyris et al. in Nature, in 2005 [76].
They were able to utilize distributed feedback (DFB) lasers to synchronize chaos and
transmit data securely using a CMA scheme at 5 GHz.

Chaos Modulation

Chaos modulation (CMO) might be similar to CMA, but it is different in a way that
the message which should be encoded, is used to modulate the chaotic source. So,
both the chaotic carrier and the message are forming a new chaotic oscillation. The
process is roughly described in the schematic in Fig. 2.15, where the chaotic carriers
are produced by nonlinear feedback. When the message c(t) is injected, the chaotic
carrier output at that is fed back nonlinearily to the Oscillator, where it gains a delay
of τ over the distance of the feedback loop. The new chaotic signal is then given by
x(t + τ) = f(x(t) + c(t)), which is together with the message signal x(t + τ) + c(t)
sent to the receiver. Because the receiver chaotic system has the same parameters as
the transmitter system, the chaotic source is also generating the chaotic carrier as the
transmitter side, x(t+τ). Hence, this generated chaotic carrier is similarly to the CMA
method simply subtracted from the transmitted signal, resulting in the clear message
signal. Therefore, when utilizing the CMO method the message signal is not allowed
to exceed a certain threshold to make the communication secure.

One of the first proofs of chaos synchronization in laser systems was also accompanied
by CMO, [77]. Van Wiggeren and Roy synchronized two erbium-doped fiber lasers, and
used a CMO scheme to encrypt, transmit and decrypt a data stream at 126 MBit/s in
1998.
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Figure 2.15: General Concept of Chaos Modulation

Chaos Shift Keying

Finally, the third main approach for chaos secure communication is chaos shift key-
ing (CSK). CSK is utilizing multiple chaotic sources on both sides, but by selective
switching between the sources, only the signal of one source is sent over to the receiver
per time slot. In Fig. 2.16 the general concept of CSK is depicted, with two chaotic
sources on each side. The message c(t) is here switching between both available chaotic
sources, e.g., a zero bit is translated to switching to the signal x1(t) and a one bit is
translated to switching to the signal x2(t). Depending on the message, other signals
are sent to the receiver. On the receiver side, the sent signal is injected in both chaotic
sources, but only one of both is synchronizing with the sent signal, so that the sent
signal can be detected. Important with this approach is to take the transient times
into account the systems need to synchronize. The bit rate should not be as fast as
the reciprocal of the synchronization time, but significantly slower. Furthermore, both
chaotic signals x1(t) and x2(t) should not differ too much, or it might be possible to
analyze the different chaotic attractors and find the two different states.

The CSK scheme does not have to be comprised of two sets of different chaotic
sources. It is also possible to employ a method called chaos on-off keying, where
the chaotic signal is modulated by an acousto-optic modulator (AOM) with a small
modulation depth of even less than 0.2% [78]. In this study they used microchip lasers.
Because the degree of synchronization is degraded in presence of external modulation
of the chaotic signal, they encoded messages into the signal, by turning the modulation
on and off at a rate of 100 kHz.
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Figure 2.16: General Concept of Chaos Shift Keying

State of the Art

The most common approach to realize chaos secure communication was to employ
semiconductor lasers, which are unfortunately limited to about 2.5 Gbit s−1. Thus, in
2010, Lavrov et al. were able to prove electro-optic (EO) feedback systems as a viable
options for broadband chaos communication [79]. They demonstrated the transmission
of 10 Gbit s−1 over a distance of more than 100 km, utilizing CMA.

Higher speeds were achieved by Ke et al. in 2018 [80], where they demonstrated a
transmission of 30 Gbit s−1 over an installed fiber network of a length of 100 km. In
their study, they used a duobinary enconding scheme, which enables the transfer of
30 Gbit s−1 in a 10 GHz optical channel.

Currently, the highest speeds were demonstrated by Zhao et al. by employing an
optical encryption scheme for wavelength division multiplexing (WDM), where they
securely transmitted 4 × 12.5 Gbit s−1 over 50 km of single mode fiber [81].

Looking at the synchronization distance, the current record holder are Wang et al.
who demonstrated a synchronization of two semiconductor lasers of a transmission line
of 1040 km [71]. They used multiple amplification relays, with normal single mode
fibers, dispersion compensation fibers and erbium-doped fiber amplifiers (EDFAs).

Moreover, there is a report from last year, showing the chaos synchronization of two
lasers over a free-space link [82] Furthermore, they showed the secure transmission of
an image over the free-space distance of 10 m by chaos masking.

While all these approach strive to achieve synchronization over longer distances,
higher speeds or increase the number of applications, by synchronizing chaos over free-
space, there is no report of synchronizing microring resonators in their chaotic state.
Microring resonator have the potential to increase the transmission bandwidth, since
the spectrum of the MI microcomb is broader than most current optical chaos sources.
Furthermore, the small footprint and the possibility to fabricate them with CMOS
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processes picture them as an attractive future.
In our group, we were able to show the synchronization of two microring resonators in

the simulation [83], using a cascaded setup of two microring resonators. The synchro-
nization has also been proved to be viable when part of the first resonator is filtered,
meaning only part of the spectrum is injected into the follower ring [84]. First in-
vestigations regarding the encryption of data and the quality of chaos were presented
[85].

2.4.2 Proposed Technique

As Zhao et al. already showed the possibility to utilize WDM for chaos secure com-
munication [81], the goal for this study is to utilize the full width of the MI comb as a
chaotic carrier. Employing a greater number of different modes of the microresonator,
can yield to even greater bandwidth. Upon synchronization of two microresonator sys-
tems a number of different chaos encryption methods can be utilized to encrypt and
decrypt the data.

Thus, the key for the communication is the synchronization and the parameters
which are needed for the synchronization. Here, the assumption which is made and
has to be true for a secure communication scheme, is that both microring resonators
are not able to synchronize without being regulated by the same parameters. The
parameters include for example the pump power, the pump wavelength, the pump
power, the temperature of the resonator, and probably parameters, which we have not
thought of as parameters yet. Furthermore, both rings have to be the same, produced
with the same process, having the same dimensions, dispersion and nonlinear effects.
Even when an eavesdropper possesses the same microring, they would have to perfectly
guess the parameters used by the legitimate users. In theory, a minuscule parameter
change should be enough to disable the synchronizability.

Once synchronization is realized, different methods can be utilized to transmit data,
e.g. chaos masking or chaos shift keying, even the generation of random bits and
then digitally encrypting and decrypting could be possible, but the focus lies here
on analogue techniques. As we have already shown the feasibility to synchronize two
microring resonators, by only injecting a part of the comb into the follower resonator
[84], this has the power to ease the synchronization. Using a few channels of the MI
comb for synchronization, makes the other channels available to transmit data hidden
or encrypted with chaos and not being needed on the receiver side to synchronize the
follower resonator with the leader resonator.

Considering a simple chaos masking technique, shown in Fig. 2.17, where part of
the channels is filtered out and in each filtered channel has a different message hidden
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Figure 2.17: Microresonator chaos masking

by chaos masking, define these channels as message channels. The unfiltered channels
are left as they are and are called synchronization channels. All channels are put
back into one fiber and transmitted to the receiver side. On the receiver side, the
message channels are filtered out and the synchronization channels are injected into
the follower resonator. The follower resonator is now synchronizing with the leader
resonator, imitating the channels which were filtered out. At the output of the follower
ring, each channel is again filtered out one by one, and compared to the corresponding
message channels which were sent by the transmitter. By subtracting the generated
signal on the receiver side from the message signals, the message can be reconstructed
for all the different message channels at the same time.

A similar concept could be realized with chaos shift keying, presuming our assump-
tion is correct, that only minuscule changes in the parameters regulating the resonators
is already disabling the synchronizability. With this two slightly different powered mi-
croresonators could be used on each side again with transmission channels and message
channels. The transmission channels are solely there to keep both microresonator pairs
synchronized. The message channels are slightly different, so that the same channels
on each side are not correlated with each other, but only with the corresponding mi-
croresonator on the other side. Therefore, the same message channels are filtered out
on one side, where the chaos shift keying technique is applied to that channel pair, so
that each outgoing mode on the transmitter side is comprised either of the the modes
signal from the first resonator or from the second resonator on the transmitter side.
On the receiver side, each mode is compared with the corresponding mode in both
resonators. By determining the correlation between the sent signal and the generated
signal on the receiver side, it can be also determined, whether in that time slot the
mode of the first or the second resonator on the transmitter side was used. But the
chaos shift keying method could be much harder to implement.
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Before moving to an experiment, the simulation of two cascaded microring resonators
and their synchronization is essential. First, the methodology is introduced, where the
the concept of the simulation is presented. The simulated rings will be synchronized
and analyzed on its own using different techniques. The results of that with a following
discussion are provided upon the introduction to the setup.

3.1 Methodology

Simulations and further calculations are done in the latest release of MATLAB, 2022b,
as of end of 2022. Utilizing the previously reviewed coupled-mode theory, Chap. 2
2.2.1, the equations are adjusted to fit the model, which is shown in the first section.
To simulate the equations, the analytical forms have to be brought into numerically
computable forms, which are here the Lugiato-Lefever-Equations (LLEs). Furthermore,
different approaches to analysis the chaos in this thesis are presented.

3.1.1 Concept

The simulation process is split into two stages, depicted in Fig. 3.1. The first stage
is to generate MI combs in each resonator on its own, and then if both MI combs
are generated, in the second stage, the output of the first resonator is injected into the
second one, letting both cavities synchronize. The synchronization process is controlled
by the variable attenuators. Moreover, a stop-band filter can be inserted between leader
and follower to filter parts of the comb out as shown in Chap. 2.3 by Moreno et al (our
group) [84].

The general idea of this concept can be seen in Fig. 3.2. Both rings are driven by
their own pump laser, Apump1 and Apump2 , with the respective pump frequencies ωpump1

Figure 3.1: Concept of Simulation Stages from [84]
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Figure 3.2: Concept of Two Cascaded Microrings

and ωpump2 . Furthermore, let the resonance frequency inside the resonators be ωlead

and ωfollow, with the intracavity fields, Alead(t) and Afollow(t), for leader and follower,
respectively. The output of the first ring is denoted by A1(t) which transforms over the
length L between the resonators to the input of the follower resonator, A2(t). Finally,
the output of the follower is given by A3(t).

In a similar fashion to Chap. 2 2.2.1, the field equations are derived. Consider the
leader cavity Alead(t), when the pump laser Apump1 is active:

dAlead(t)
dt

= −
( 1

2τlead
+ iωlead

)
Alead(t) + 1

√
τcoup

Apump1(t) exp(−iωpump1t) (3.1)

Instead of using the reciprocal of the coupling decay, utilizing the coupling rate, κcoup,
directly simplifies the equation. The attenuation rate changes to τ−1

lead = τ−1
int + κcoup.

Moreover, the optical field inside the cavity is transformed to

Alead(t) = Alead(t) exp(iωpump1t), (3.2)

so that the overall time variation of the cavity is given by:

dAlead(t)
dt

=
(

i(ωpump1 − ωlead) − 1
2τlead

)
Alead(t) + √

κcoup1Apump1(t) (3.3)

Defining the beating, or rather the detuning, between leader and first pump laser:

δ1 = ωpump1 − ωlead, (3.4)
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makes the previous equation more readable, which results in

dAlead(t)
dt

=
(

iδ1 − 1
2τlead

)
Alead(t) + √

κcoup1Apump1(t). (3.5)

Similarly, when the ring is only driven by the pump laser and nothing else, the
differential equation for the follower ring can be expressed as:

dAfollower(t)
dt

=
(

iδ2 − 1
2τfollow

)
Afollow(t) + √

κcoup2Apump2(t), (3.6)

where all the variables are defined in a similar fashion as before. Having both resonators
connected to a pump laser and being able to generate MI combs in both, sets the stone
for the next step, connecting both cavities.

When the output of the first ring travels over the distance L until it is coupled into
the second ring, the phase and the amplitude is prone to change. Consider the complex
propagation constant in the fiber k = kr + iki, and the incoming optical field at the
second resonator is given by:

A2(t) = exp(−ikL)A1(t). (3.7)

To determine the output of the leader cavity Eq. 2.31 is used, so that A1(t) and
A2(t) can be written in terms of the pump laser and the transformed intracavity field
of the first ring, Apump1 and Alead(t):

A1(t) = √
κcoup1Alead(t) − Apump1(t) (3.8)

A2(t) = exp(−ikL)
(√

κcoup1Alead(t) − Apump1(t)
)

(3.9)

The output field from the first cavity, A2(t), can be added to Eq. 3.6, so that:

dAfollow(t)
dt

=
(

iδ2 − 1
2τfollow

)
Afollow(t) + √

κcoup2Apump2(t) + . . .

√
κcoup2 exp(i(ωpump2 − ωleader))A2(t) (3.10)

=
(

iδ2 − 1
2τfollow

)
Afollow(t) + √

κcoup2Apump2(t) + . . .

√
κcoup2 exp(i(ωpump2 − ωlead))A1(t) exp(−ikL) (3.11)

Since the output field A1(t) is oscillating with the frequency ωlead, a beating between
this frequency the second pump laser can be seen, (ωpump2 − ωleader). Furthermore, the
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output field of the second cavity can be defined as:

A3(t) = √
κcoup2Afollow(t) − A1(t) exp(−ikL) − Apump2(t) (3.12)

3.1.2 Lugiato-Lefever Equations

Lugiato and Lefever derived with their equations a way to describe light propagation
in non-linear optical resonators [86]. The Lugiato-Lefever Equations (LLEs) were first
introduced as a equation that is independent of the longitudinal variable z, which could
be given by:

∂E

∂t
= Ein − E − iθE + i∇2

⊥E + i|E|2E, (3.13)

and the transverse Laplacian operator,

∇2
⊥ = ∂2

∂x2 + ∂2

∂y2 , (3.14)

where t, x and y are normalized variables for time and space. They are normalized as
t = κt, x = x

ld
and y = y

ld
, where κ is the cavity decay rate and ld the diffraction length.

Furthermore, the cavity detuning is given by θ = (ωr − ω0)/κ, where ωr is the closest
frequency of the resonator to ω0. On the RHS of Eq. 3.13, each addend has its physical
meaning. Ein is the normalized amplitude of the input field, the second addend is the
decay term, the third one is the detuning term, then there is the transverse Laplacian
which expresses the diffraction, finally there is the cubic nonlinear term that describes
the Kerr effect.

A few years later the longitudinal LLE was formulated [87, 88]. It is independent of
the transverse variables, namely the coordinates x and y, and only dependent on the
longitudinal variable z.

∂E

∂t
= Ein − E − iθE + i

∂2E

∂z2 + i|E|2E, (3.15)

where z is normalized by z = z/a and a depends on the second order dispersion of the
medium. In contrast to the transverse LLE, the longitudinal LLE changes diffraction
to dispersion, which is beneficial for microring resonators. Therefore, the longitudinal
LLE is used to describe the behavior in the cascaded microresonators.

The here used LLE is a generalized variant, which derivation is quickly reviewed [89].
Consider a typical ring-resonator waveguide configuration, similar to Fig. 2.4 in Chap.
2.2.1, where the resonator is pumped by a continuous-wave laser with a driving field
Ein. Power is coherently added to the optical field propagating inside the resonator,
through a coupler with coupling coefficient κ. To describe this process mathematically,
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the coupling region can be investigated during the transition of two round-trips.

Em+1(0, τ) =
√

κEin +
√

1 − κe(m)(L, τ)eiϕ0 , (3.16)

where L is the round-trip length, τ the time, and ϕ0 the accumulated phase of the
intracavity field over one round trip.

With the assumption that light propagates in a single spatial mode, the temporal
evolution can by described by the nonlinear Schrödinger (NLS) equation.

∂E(z, τ)
∂z

= −αi

2 E + i
∑
k≥2

βk

k!

(
∂

∂τ

)k

E + iγ|E|2E. (3.17)

αi is the linear absorption coefficient inside the resonator, the dispersion coefficients
as a Taylor series expansion are βk = dkβ/dωk|ω=ω0 . And γ = n2ω0/(cAeff) is the non-
linearity coefficient, where n2 is the nonlinear refractive index and Aeff is the effective
area of the resonator.

Eg. 3.16 and Eq. 3.17 can be averaged and merged together, so that an externally
driven NLS, or rather the generalized LLE, is revealed,

tR
∂E(t, τ)

∂t
=
−α − iδ0 + iL

∑
k≥2

βk

k!

(
i ∂

∂τ

)k

+ iγL|E|2E

+
√

κEin, (3.18)

where tR is the round-trip time, α denotes the total cavity losses as α = (αi + κ)/2,
and δ0 is the detuning between the l’th orders cavity resonance and ϕ0, δ0 = 2π − ϕ0.
Furthermore, there is t, a continuous variable, which measures the slow time of the
cavity. It can also be expressed in from of round-trips:

E(t = mtR, τ) = E(m)(0, τ). (3.19)

Application to model

While Fig. 3.2 showed the coupled-mode equations for the simple case of two res-
onators, without any possibility to set different parameters, this functionality is in-
cluded in the actual concept, as seen in Fig. 3.3. In this model, the names for the
optical fields are changed to increase readability, and attenuator are added. Utilizing
αpump and βinj, the amplitude of the pump for the follower ring and the amplitude of
the leader’s output can be adjusted, so that the synchronization between both out-
put signals of the cavities can be optimized. Synchronization is calculated by taking
the cross-correlation coefficient between leader output and follower output, which will
explained after the LLEs for the simulation concept have been presented.
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Figure 3.3: Concept of Cascading two microresonators with additional parameters

Following the example of the generalized LLE, the values for the setup on hand can
be inserted into the equations. Starting with the leader ring, A(t), the LLE is directly
given by,

tR
∂A

∂t
=
(

−αiL + κ

2 − iδ0 + iL
2 β2

∂2

∂τ 2 + iγL|A|2
)

A +
√

κEin,1, (3.20)

where the variables are similar to Eq. 3.18. The only difference can be found in the
dispersion term, since all higher-order dispersion coefficients are neglected and only the
second-order term is taken into account. As motivated in the theory part 2.2.1, the
higher-order dispersion coefficients are exponentially shrinking, third-order coefficients
and above have a marginal effect on the dispersion, so that they can be neglected.

Since the follower cavity shall be controlled by the leader’s output, that output has
to be defined. The output of the leader in terms of input field and intracavity field is
given as:

Aout = Ein,1 −
√

κA (3.21)

This output travels the distance L between leader and follower, where its amplitude
and phase are changing due to the complex wave propagation constant k = kr + iki,
but in the current simulation results the complex part is set to zero. Nevertheless, for
the input into the second cavity holds the following equation:

Bin = βinjAout exp(−ikL), (3.22)

where βinj the attenuation factor is from the variable attenuator. To simulate the chaos
synchronization between distant systems, an additional noise component can be added
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to the input field of the follower resonator:

Bin = βinj(Aout exp(−ikL) + Anoise), (3.23)

where Anoise is the additionally added noise.
Moving to the second cavity, the difference compared to the leader cavity is the num-

ber of inputs. Next to the attenuated pump for the follower ring, also the attenuated
output of the leader cavity is coupled into the follower cavity. This simple weighted
addition is visible in the next equation for the follower ring:

tR
∂B

∂t
=
(

−αiL + κ

2 − iδ0 + iL
2 β2

∂2

∂τ 2 + iγL|B|2
)

B + . . .

√
κ[βinjAout exp(−ikL) + αpumpEin,2]. (3.24)

Finally, the output of the follower ring, can by defined as:

Bout = βinjAout exp(−ikL) + αpumpEin,2 −
√

κB (3.25)

To analyse the degree of synchronization the correlation between both outputs, Aout

and Bout is calculated. But as it stands out, in the output signal of the follower cavity
is still a small portion of the output from the leader resonator, which will lead to a
correlation between both cavities at any time when they are connected vie the trans-
mission line. Their correlation is always present, even if it is just a small percentage.
Luckily, in the simulation the intracavity instantaneous fields can be calculated, which
can proof synchronization. However, in the experiment this problem might occur, that
the signal from the first cavity is just passing the second cavity without coupling into
it.

3.1.3 Chaos Analysis

To make sure the chaos is chaotic enough for securing communication, meaning there
is no periodicity in the signal, different approaches to analyze the chaos are explored
in this section. As in the theory chapter investigated, there are different ways to
characterize chaos. One of the most vivid representations of chaos is plotting the
strange attractor. To achieve a accurate strange attractor of a chaotic system one
has to setup the coupled chaotic differential equations. However, there are also ways
to visualize a chaotic signal in an attractor portrait without having the differential
equations but only measured data. Plotting one-dimensional data to visualize it in a
possible attractor portrait, one plots the measured data points against the same data
points but shifted by a ∆T , so that one data point is paired up with another one
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Figure 3.4: Mutual Information(I) and Autocorrelation(C) with Strange attractors [90]

that was measured ∆T later. This can already result in visible attractors or a vivid
confirmation on, whether the system is periodic, quasi-periodic, or chaotic. But, there
is a way to optimize finding a value for ∆T , that was found out by Fraser et al in 1986
[90]. They showed in their paper, how the attractor portrait is changing for different
∆T . In Fig. 3.4, the same dataset shows two completely different attractor portraits
for different approaches to determine the optimal ∆T . A common way was to look at
the autocorrelation function of the dataset and find the first zero-crossing. When using
the same ∆t for the strange attractor, the strange attractor is constructed by linearly
independent coordinates. On the other, when they calculated the mutual information,
after assuming a histogram distribution to use for calculating the information content
with respect to the time delay. When constructing the strange attractor with the time
delay of the first minimum of the mutual information table, they found out that the
strange attractor is generally more linearly independent.

Let X and Y be two random variables. To review the information content per
time delay, each time the signal is shifted, joint 2D histograms are constructed, the
joint possibility distribution, PX,Y (x, y). Using the joint probability, the marginal
probabilities can be calculated, which are given as PX(x) and PY (y), respectively. The
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mutual information is given as:

I(X; Y ) =
ˆ ˆ

PX,Y (x, y) log2

(
PX,Y (x, y)

PX(x)PY (y)

)
dx dy (3.26)

But since measured values are not continuous, the discrete form of the mutual infor-
mation function is needed in this case, which is given by:

Idiscrete(X; Y ) =
∑

xk∈X

∑
yk∈Y

PX,Y (xk, yk) log2

(
PX,Y (xk, yk)

PX(xk) · PY (yk))

)
. (3.27)

Furthermore, the bifurcation diagram can be constructed, which is, e.g. simply done
by recording 100 local maxima or minima for one detuning step of the cavity. The
maxima or minima are then displayed with respect to detuning, which results in a
bifurcation diagram.

3.2 Results

To realize the previously defined model in a MATLAB simulation the Lugiato-Lefever
equations are used with the parameters shown in Tab. 3.1. The FSR with its cor-

Parameter Value
FSR 200 GHz

Cavity length L 757.1 µm
Intrinsic Quality factor Qi 2 × 106

Coupling factor κ 0.003
Second-order dispersion β2 100 ps2 km−1

Nonlinear coefficient γ 0.645 W−1 m−1

Pump power |E2
in,1| = |E2

in,2| 85 mW
Pump wavelength 1558 µm

Table 3.1: Simulation parameters

responding cavity length L, and the high Q-factor match available resonators. The
coupling factor κ is chosen in a way that the waveguides and microresonators are
critically coupled. The pump power is held constant during the simulation, but the pa-
rameter αpump,2 can be changed, so that only part of the initial pump power is injected
into the second microresonator. To generate the MI microcombs, the pump wavelength
is increased by 5 am per iteration.

This result section is divided into four parts. First, only a single ring is considered,
where its chaotic attractor is analysed, to compare it with the experimental results
later. Then, the MI comb generation in two microresonators is investigated, following
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Figure 3.5: Optimization by mutual information technique [90]

the synchronization of both in the optimum case. Finally, parameters like βinj or
αpump,2 are changed and additional noise in the transmission channel is introduced, to
investigate their influence on the synchronization.

3.2.1 Single Ring Analysis

In this part the chaos attractor will be shown based on the mutual information, accord-
ing to the technique by Fraser et al. [90]. In order to do this, the mutual information
depending on a time delay has to be calculated. The calculated mutual information
function with respect to the time delay is depicted in Fig. 3.5. Each sample corre-
sponds to a time duration of the reciprocal of the repetition frequency, namely the
round trip time of 5 ps. The inset shows the amplitude distribution of the recorded
signal, which is averaged per round trip and has therefore a relatively small deviation.
In total 100000 round trips were recorded, averaged per round trip, sorted into bins to
generate a histogram, which is then used to determine the mutual information function.
In the mutual information function, the first minimum, namely the point where the
signal is shifted to a point were the original signal and shifted signal have the smallest
association with each other, is located at 146 round trips, which equals to 0.73 ns.

Employing the found delay of smallest mutual information as the delay for plotting
chaos attractors, these portraits are printed in Fig. 3.6, where a 2D and a 3D diagram
are explored. While not as neat and pretty as the chaos attractors known from the
Lorenz attractor or the Rössler attractor, a chaotic attractor can be found. In the
2D version, Fig. 3.6a, the trajectories are shown and how they are following a ring-
like way around a diagonal line. If the recorded data would belong to a periodic
system, a clean ring should be visible. And if it was complete random time series, no
attractor can be seen, because true randomness, would result in a cloud of random
points. Thus, this attractor is validating the presence of a quasi-random, or chaotic,
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times series. Similarly, same conclusions can be drawn from the 3D version of the
attractor portrait, in Fig. 3.6b. In comparison to the 2D version, more hints about
the attractor are visible. The view-angle is slightly changed, so that a tube-like with
variable circumference can be seen.

Important to note, these results are only approximations, as the chaotic differential
equations have not been derived.

3.2.2 Dual MI Comb Generation

After proving the presence of chaos using the attractor portraits, this section dedicates
itself to the generation of two MI combs at the same time. In order to synchronize
two microrings in the end, first two MI combs in said microrings should be generated,
before the leader comb is injected into the follower comb. Fig. 3.7 shows the generation
of the MI combs in each resonator, the leader comb is plotted in blue and the follower
comb in red. The two graphs on the left show the average power in the cavity with
respect to the normalized detuning. The two graphs in the middle show the effective
detuning with respect to the normalized detuning. The difference between the effective
detuning and the normalized detuning is that the effective detuning is also taking the
resonance shift due to the kerr nonlinearity into account.

As the wavelength is increased the effective detuning is decreased and the pump
wavelength is approaching the effective resonance wavelength. And as the pump wave-
length is approaching the effective resonance wavelength, the Turing pattern of the
microcomb changes into an MI comb, which is visible in the graphs on the left, because
the the average power is changing chaotically. The power is continuously increasing as
the pump wavelength approaches the effective resonance wavelength, and the strongly
oscillating power shows the chaotic regime of the resonator. On the right, both combs
can be seen as they look like in the end of the MI comb generation.

To investigate the generated MI combs, consider the temporal waveforms in Fig.
3.8. The two graphs on the left show the temporal waveforms for the same calculated
round trip each, where the intracavity power is shown over the round trip period of
5 ps. As they seem not correlated when looking at it, the correlation is indeed very
low at around 6.44%. A more vivid way of comparing both temporal waveforms might
be the direct comparison between follower and leader fields. The right side shows the
square-root of the power in the follower ring directly compared with the square-root of
the power in the leader ring. Each data point corresponds to the same time sample, and
if a perfect correlation would be present, these data points would align on a diagonal
line. However, as expected, the data points are distributed over the whole range, but
with more values being low than high.
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Figure 3.6: With optimized ∆T = 0.73 ns
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Figure 3.7: Generation of the MI combs in each resonator
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Figure 3.8: Temporal Waveforms of the different resonators
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Figure 3.9: Correlation between both resonators for 9 different runs, with the same
starting parameters, where the resonators were left unconnected after comb
generation

The arising question is whether the correlation between both unconnected cavities
changes over time, when simulating both over the period of 5000 round trips or not.
Fig. 3.9 visualizes the correlation evolution of both cavities, simulations with the same
settings are repeated multiple times. The y-axis shows the cross correlation between
both rings per simulated round trip, shown on the x-axis. Parameters as the pump
wavelength and pump power are all fixed during the simulation, the only changing
parameter is the noise in the temporal waveform of the pump laser in each round trip.
Since the injection coefficient between them is βinj = 0, so in the real world they should
be completely uncorrelated.

However, since the simulation is rather visualizing an ideal case, where no other
effects influence the waveforms, the cross correlation does not seem to change over
time. In the beginning of the simulation each waveform seems to be set on one form,
which does not change much over time. Thus, the correlation between both cavities
does not appear to change over time. When averaging over all different runs, over the
whole time of 5000 round trips, the cross correlation should approach zero with an
increasing number of simulation runs.

After generating MI combs in two different unconnected microresonators and de-
termining the cross correlation between them, shows that while there is no sign of
synchronization, their cross correlation also does not change much.
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Figure 3.10: Generation of the MI combs in each resonator

3.2.3 Synchronization of Two MI combs

The next step is to analyze the synchronization of two MI combs. First, similarly to
the previous case, the MI combs are generated in both resonators. Results of this
generation are shown in Fig. 3.10. Again, the blue plots show the leader cavity and
the red plots the follower cavity. On the left, both plots show the average power per
round trip in each cavity with respect to the normalized detuning. The process of
generating the MI combs is completed when the pump wavelength moved to longer
wavelengths until the normalized detuning reaches 1.9. In the figures in the middle,
the corresponding effective detuning is presented, and evaluates to around -0.6 when
both MI combs are generated. This means, that both combs are blue detuned. On the
right side, the respective frequency spectra are depicted.

After the generation of both MI combs, both resonators are cascaded. To cascade it is
important to set the correct parameters, between the leader and follower resonator, βinj,
and between the second pump and the follower resonator αalpha2 . The used parameters
are shown in Tab. 3.2.

Parameter αalpha2 βinj
Value 0.03 0.55

Table 3.2: Synchronization Parameter
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Figure 3.11: Temporal Waveforms of the different resonators

Utilizing these parameters, the output of the leader cavity is injected into the follower
cavity, and 5000 round trips are calculated. At the end of these calculations the
correlation between both fields inside the cavities is determined. An example is shown
again in Fig. 3.11. On the left, the leaders and followers temporal waveforms for one
round trip are shown. Comparing them with the bare eye, one notices already a high
correlation. Indeed, the here depicted waveforms exhibit a correlation of 97.85%. On
the right side of the figure, the direct comparison between both signals is visualized,
where the amplitude of the instantaneous intracavity field of the leader cavity is plotted
with respect to the instantaneous intracavity field of the follower field.

The graph validates the calculation of the correlation between both signals, as all
the data points are aligning neatly along the diagonal of the graph.

How the correlation behaves over time is depicted in Fig. 3.12. Employing the
parameters from above, the simulation is conducted 10 times, the correlation between
each resonator per round trip is calculated and plotted with respect to the round trip
number. In the beginning of the graph, a similar phenomenon as above in Fig. 3.9 can
be seen, namely that the starting correlation differs for each run, because the resonators
are not connected during MI comb generation. The moment the leader comb is injected
into the follower comb, the follower comb is changing in order to adjust itself to the
signal of the leader comb. Over the period of the first 1000 round trips, the waveform of
the instantaneous field of the follower ring is increasingly copying the waveform of the
instantaneous field of the leader ring. When averaging the correlation of the different
simulation runs, the total correlation results to over 90%, meaning the synchronization
is high enough for chaos secure communication applications.
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Figure 3.12: Correlation between both resonators for 10 different runs

In order to increase the correlation on average, a question remains. It still has to
be found whether there is a parameter which is not fixed, that the synchronization
depends on. Comparing the temporal waveforms for different correlation values might
give insights in this matter.

Regarding the Reproducibility of Synchronization

Already perceptibly present in Fig. 3.12 is the inconsistency of synchronization, when
repeating the simulation where all controllable parameters are kept the same. The only
variable in the repetitions of the simulation is the added noise to the input CW laser.
In this section the reason for the differences in synchronizability is investigated.

First, the crosscorrelation seen in Fig. 3.12 is averaged for every run over the last 2500
simulated round trips. The same is done for the effective detuning of each resonator
for each run. Then, a representative temporal waveform is picked to compare the
different correlations. In figure 3.13, 6 runs are represented by one round trip in each
ring, and compared by their achieved correlation. The first row depicts a simulation
run, where the highest correlation was achieved, the runs in the next rows are lined
up in a decreasing order regarding their achieved cross correlation, XC. On the left
side, one representative waveform of the leader ring can be seen for each case, which is
juxtaposed on the right side with the corresponding temporal waveform of the follower
ring. Furthermore, the averaged detuning, ∆δeff, is added to each case.

While this approach is not quantitatively but rather qualitatively investigating the
relationship between correlation and temporal waveform, the leader ring shows a strong
effect that the form of the temporal signal has on the correlation. When considering
the simulation runs with decreasing correlation, it seems as if the chaoticness of the
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Figure 3.13: Temporal waveforms for differences in correlation and effective detuning
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Figure 3.14: Effective detuning evolution for each run
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Figure 3.15: Positive effective detuning in the follower ring

signal is worsening the synchronization, as higher synchronization is achieved for a
temporal signal that almost looks like a multisoliton waveform. In contrast to that,
the synchronization result is below the minimum threshold for application, when the
temporal waveform looks more chaotic. As the effective detuning is moving deeper into
the blue-detuned regime, decreased from -0.59 to -0.8, the synchronization worsens. A
similar effect of increasing chaoticness which decreases the synchronization can be
seen for the follower ring. However, the leader ring seems to have more influence
on the synchronizability, because even though the follower ring more often exhibits a
multisoliton state-like temporal waveform, it fails to follow the leader correctly.

A reason for this multisoliton state-like might lie in the effective detuning. In figure
3.14 the evolution of the effective detuning in each ring is visible for the different
repetitions of the simulation, again, recorded from the moment of connection between
follower and leader. While the effective detuning for the leader resonator starts at
some value and keeps oscillating in that same regime, the follower resonators effective
detuning exhibits a strong shift into the positive regime when leaders signal is injected
into it. The effective detuning being in the positive regime means that the ring is red-
detuned, or rather, it has left the regime of the MI comb. However, the signal is still
chaotic, as shown in Fig. 3.15, where the instantaneous field inside the cavity is shown
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Figure 3.16: Correlation vs. effective Detuning

for said positive effective detuning of ∆δeff = 1.03. After a few hundred round trips the
effective detuning returns to the blue-detuned state, and only then the instantaneous
field inside the cavity is stabilizing itself to become that multisoliton-like state.

Finally, the relationship between the synchronization, or, the correlation between
both cavities, is investigated with more samples. This time, the simulation is repeated
700 times using the same parameters, the effective detuning in each resonator and the
average correlation between both resonators is recorded. These results are shown in
Fig. 3.16. Indeed, a relation between correlation and effective detuning can be seen,
namely the synchronization is better for an effective detuning which is closer to the
actual effective resonance in the blue-detuned regime.

However, there are also a lot of data points which are an exception to this rule,
meaning synchronization might also fail even if the effective detuning is in the right
regime.

3.2.4 Effect of changing parameters on the synchronization

This section covers the effect different changing parameters have on the synchroniza-
tion, in order to maximize the synchronization and increase the understanding for chaos
synchronization of microcombs.

No second Pump

In this part, the synchronization is analyzed, for the case of no comb generation in
the second resonator, meaning αpump2 = 0. First, the MI comb is generated in the
leader resonator, and because there the second pump parameter is set to zero, no field
is generated in the follower resonator. Figure 3.17 shows the moments right before
and directly after the first comb is injected into the the second one. On the left,
where the fields before the connection are depicted, only the leader resonator exhibits
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Figure 3.17: No second pump αpump2 = 0

a comb. Right after cascading both resonators, the first field is inserted into the second
resonator, and fields are visible in both resonators.

When determining the cross correlation between the instantaneous fields inside the
leader and follower ring, high correlation can be observed. In Fig. 3.18, the cross
correlation for 10 different simulation runs, which run for 5000 round trips each, can be
seen. Because there was no intracavity field in the follower resonator before cascading
both resonator, the cross correlation between both fields starts out very high and stays
mainly above 90% for most of the runs. There are also exceptions where the correlation
evolves below 90%, but in general the correlation between both signals is good enough
for applications.
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Figure 3.18: Correlation between both rings for 10 different runs
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Changing the injection factor

In this section the effect of the change of the injection factor on the synchronization is
briefly analyzed.

This time, the method to record the data is changed. First, both MI combs are
generated without any connection. Then, the first 3000 round trips are calculated and
recorded with an injection factor βinj = 0, the pump factor is set to αpump2 = 0.01.
After that, the injection factor is increased in 0.05 increments, while calculating 3000
round trips for each step. The correlation is then determined for each round trip and
averaged over the 3000 round trips for each injection factor increment. The results are
shown in Fig. 3.19. This approach to sweep the injection factor while both rings are
connected might not be the best, because the injection factor used above, βinj = 0.55
yielded over 90% correlation, while it is just above 85% here. Still, it shows that the
synchronization has a dependence on the injection factor βinj.
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Figure 3.19: Correlation for different different values of injection factor βinj

Effect of noise in the transmission line on the synchronization

In the real world, noise becomes an inevitable companion. The following section deals
with the effect of noise in the transmission line on the degree of synchronization.

In Fig. 3.20, the correlation between the instantaneous fields of leader and follower
ring is calculated for different values of the signal-to-noise-ratio(SNR). In the fast step
of calculating the Lugiato-Levefer equations, each round trip a different temporal noise
waveform is added to the temporal output waveform of the leader resonator. Depending
on the current SNR, the amplitude of the added noise waveform is adjusted. To put
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Figure 3.20: Correlation between both resonators for different levels of noise

this into equation form:
AN = rand(N), (3.28)

where AN is the temporal noise waveform, that will be added in one iteration, and
rand(N) is a function generating random numbers between -1 and 1, where N is the
number of data points per calculated round trip. To calculate the amplitude of the
previously generated randomized temporal signal, the powers need to be calculated
and adjusted according to the SNR.

PS = 1
N

N∑
i=0

|Aout(i)|2 (3.29)

PN = PS

SNRlin
(3.30)

PNinit = 1
N

N∑
i=0

|AN|2, (3.31)

where PS is the average power of the signal per data point in the present iteration, PN is
the average power the noise signal should have according to the SNR, with SNRlin being
the SNR in decimal scale, and PNinit is the average power of the generated randomized
noise signal, which still has to be adjusted. Knowing the relevant powers the generated
noise signal can be adjusted:

Bin = βinj

(
Aout + AN

√
PN

PNinit

)
. (3.32)

Inserting Bin into the follower cavity, the effect of noise in the transmission channel is
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analyzed.
This time, not only the intracavity fields are compared, but also the output fields of

each ring. As one sees in Fig. 3.20, the correlation between both signals is increasing
with an increasing SNR. Each data point is calculated from averaging the cross correla-
tion of 5 different simulation runs with 5000 round trips each. Noticeable in this graph
is the discrepancy between the intracavity field and the output field. While the intra-
cavity fields synchronize very early at an SNR of 0 dB, the output fields seem to find a
managable synchronization starting at an SNR from around 15 dB. This discrepancy
is because of the filtering effect of the microresonator. Only the frequencies around
the resonance frequencies are able to couple into the microresonator. Therefore, most
of the noise is filtered out. This means, that the synchronization seems to be very
robust against external noise. Since the noise is mainly present in the waveguide that
provides the follower ring with the signal from the leader ring, a method to extract the
synchronized signal with less noise, is to utilize an add-drop resonator.
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4 Experiment

This chapter reveals the evolution of the experimental setup. Since the approach of
synchronizing two microring resonators by cascading them is novel, there is yet no
report on how to set an experiment up. To motivate and justify it’s viability, the
experimental setup is built up step by step in this chapter. First, the methodology
is discussed, which is followed by the results and the discussion afterwards, where the
experiment in its different stages is shown, which is split into four stages. The four
stages go from simply measuring the Q-factor and determining the resonances of the
resonator, to an characterization of the MI comb to a dual MI comb generation over
to the synchronization setup. Additionally for the methodology part, a setup for a
detuning measurement is shown, although it was not conducted in the real experiment.

4.1 Methodology

To introduce the different experiment setups, this methodology section will list, elu-
cidate and exemplify the various procedures. The investigated microresonators are
integrated on a chip as already elucidated in chapter 2.2.1, but they are shown again in
figure 4.1. On the left 4.1a, the design plan is pictured where the fiber array is clearly
visible with each channel being labeled. These labels will be used below to specify the
experiment setups and discuss the results. On the right 4.1b, the actual fabricated
chip is depicted.

(a) Design for the chip (b) Picture of the fabricated chip

Figure 4.1: Integrated microrings with fiber array
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TSL PM

Figure 4.2: Q-Measurement setup

TSL Santec TSL-710
Resonator FSR = 250 GHz

PM Agilent 81634B

Table 4.1: Equipment for Q-Measurement

4.1.1 Q-Measurement

One of the most significant parameters of the resonator is as discussed in chapter 2.2.1
the quality factor and of course the resonance frequencies. The following measurement
procedure is set out to determine these parameters. In figure 4.2, the experimental
setup is depicted. A tunable semiconductor laser (TSL) is inserted into a polarization
controller (PC) that is connected to one of the packaged resonators. Specifications of
the used equipment is summarized a table below 4.1.

The output of that chosen resonator is measured by a power meter (PWR). Utilizing
the PWR connected to a computer enables the measurement of a transmission spec-
trum, where the wavelength of the TSL is swept from smaller to longer wavelengths.
While sweeping, the power output behind the resonator is measured and the transmit-
ted power with respect to the wavelength can be analysed, as seen in figure 4.3. This
measurement is not only used to determine the resonance wavelengths but also to set
the PC correctly. In Fig. 4.3a, the resonances of the microring are visible. As the
resonator absorbs light at its resonance frequencies, the measured power at the PWR
also drops. The resonance frequencies correspond to these transmission dips. However,
the resonances also depend on the polarization, meaning depending on the composi-
tion of transverse electric (TE) and transverse magnetic (TM) modes, the TE or TM
resonances are visible to a different degree. The PC has to be set in order to let mainly
TE modes propagate, since the TE resonances have a higher Q-factor and microcomb
generation achieves better results with TE modes. The here depicted resonances show
the TE resonances.

By analyzing the transmission spectrum around the resonance wavelengths, the Q-
factor is determined. As presented above in section 2.2.1, the Q-factor is sufficiently
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Figure 4.3: Transmission-Wavelength

approximated by the ratio of the resonance frequency and the bandwidth of the res-
onance dip. In order to determine the Q-factor for one resonance, first the resonance
wavelength has to be determined, which is simply one of the local minima in the trans-
mission spectrum. In Fig. 4.3b, the very spectrum around a resonance wavelength can
be seen. To calculate the Q-factor, a fit with a Lorentzian curve is done 4.1.

f(x) = y0 − 2A

π

FWHM
FWHM2 + 4(x − xc)2 (4.1)

To fit the experimental values to a mirrored Lorentzian curve four parameters are intro-
duced. y0 is the y-offset from the origin, A describes the area between the Lorentzian
and y0, FWHM is the width of the Lorentzian at its halved maximum value and xc is
the center wavelength of the resonance. Then, the center wavelength and the FWHM

61



4 Experiment

TSL
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Figure 4.4: Experiment Setup to Measure Detuning

of the Lorentzian function is used to determine the Q-factor of that resonance,

Q = λc

∆λ
(4.2)

where λc is the resonance wavelength and ∆λ the FWHM of the dip in the transmission
spectrum. In this example measurement, the resonance around λc = 1551.066 nm is
investigated, and a bandwidth of FWHM = 1.2 pm is determined which evaluates to

Q = λc

∆λ
= 1551.066 nm

1.2 pm = 1.26 × 106. (4.3)

In the experiments below, the Q-factors of the resonators are determined according
to this procedure, whenever possible. As this is a fast way to get not only a value for
the Q-factor of the resonator, but also to set the polarization of the PC in the correct
way to suppress the TM modes.

4.1.2 Detuning Measurement

Another value one might be interested is the detuning, which is effectively the distance
between the resonance wavelength and the wavelength of the pump laser. In order
to measure the detuning between the pump laser and the nearest resonance of the
microring, the following approach is utilized. The main idea of this setup is to measure
the effective detuning, since it is not determinable without actually measuring it. This
is due to the fact that the effect the thermals or the nonlinearities in the cavity on
the resonances have is only approximatable, even though the resonances are measured
before and the pump laser’s wavelength is known. The setup is shown in Fig. 4.4, and
the specifications of the equipment used is shown in Tab. 4.2.

Compared to the setup for measuring the Q-factor, first an phase modulator (PMD)
and an erbium-doped fiber amplifier (EDFA) is inserted between the TSL and the PC.
This setup requires the PC to be set correctly, that only TE modes are transmitted
to the resonator, and broad comb generation is possible. The TSLs power is set to
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TSL Santec TSL-710
EDFA PriTel PMFA-30-10

PD Thorlabs DET08CFC/M
ESA Siglent SSA 3032X-R

Table 4.2: Equipment for the Detuning Measurement
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Figure 4.5: Graph depicting the measured Beatnote-spectrum (Data from [91])

3 dBm and amplified by the EDFA, so that an output power of 1 W is achieved, which
is inserted into the PC that is connected to the resonator. By setting the TSL to a
wavelength smaller than a chosen resonance wavelength but close to that resonance
wavelength and slowly increasing the wavelength of the TSL, the comb is generated.

The generated output signal of the resonator is split into two fibers. One fiber goes
into a fiber Bragg-grating (FBR) to filter the pump signal out, which is then first
measured by an optical spectrum analyzer (OSA), further attenuated and converted
into an electrical signal by a photodiode (PD), which sends the electrical signal to an
oscilloscope (OSC). The other fiber goes directly into a PD, converting the light signal
into an electrical signal, which is sent to a network analyzer (NA) or an electrical
spectrum analyzer (ESA) with a tracking generator (TG), that controls the PMD.
Here, a vector network analyzer or a scalar network analyzer would both work fine,
but the used analyzer is an ESA with a TG. The detuning between pump and resonance
wavelength can then be read from the measured spectrum of the ESA, as seen in figure
4.5. The present spectrum radio frequency (RF) spectrum and the effective detuning
is read by determining the maximum value of said RF spectrum.

To explain the measurement of a peak, the existence of the feedback loop has to
be motivated. The TG of the ESA is producing the same frequencies as the ESA is
measuring, as the output signal of the resonator is inserted into the ESA. Feeding
the PMD with the signal of the tracking resonator, the phase of the TSL is modulated
according to the frequencies generated by the TG. Because of the phase modulation, the
pump laser develops side bands, which are depicted in a simple schematic in figure 4.6a.
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When looking at the frequency spectrum, the pump gains sidebands symmetrically to
the pump frequency, fpump and equidistant between each sideband. The idea, here, is to
utilize the sidebands as a tool to measure the effective detuning. When the wavelength
of the TSL is adjusted, meaning it is increased in order to move closer to the resonance
wavelength, the mode’s sidebands move closer to the resonance, too. In Fig. 4.6b, this
process is depicted. Important to note, this graph shows the frequency instead of the
wavelength, meaning as the wavelength is increased, the frequency of the emitted CW
from the laser becomes smaller and moves closer to the resonance frequency. As one of
the sidebands is absorbed by the resonator, the symmetric counterpart finds itself in an
unbalance and forces the system to generate a beatnote between the uncompensated
sideband and the pump frequency. The generated RF signal is measured by the ESA
and the frequency of the peak in the ESA spectrum is the beating frequency generated
by the unbalance of the sidebands.

CW Laser

Sidebands

fpump

Sidebands

f

(a) Pump with Sidebands

CW Laser

Sidebands

fpump

Sidebands

f

Resonance

fbeat

(b) Resonance absorption

Figure 4.6: Phase-modulated pump with sidebands approaching a cavity resonance

But this approach has a few drawbacks. First, the ESA which is used for the control
of the PMD measures only with two decimal places. Second, and the significant draw-
back for this method is its deficit in accuracy when approaching the resonance. When
increasing the wavelength and decreasing the detuning, the measured peak of the RF
spectrum moves to lower frequencies. But only down to a certain point, where it stops
moving further to smaller frequencies, even though the detuning is decreased. Because
of this reason, the detuning is not measured in the following measurements.

To summarize, a simple feedback loop is introduced to generate sidebands of the
pump laser, enabling measuring the detuning between the laser and the next resonance.
However, this approach is not used in the following sections, as it is not accurate enough
for the MI state of the comb.
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Figure 4.7: Experimental Setup for Comb Generation

4.1.3 MI Comb Characterization

In this section the setup for the generation of an MI comb is presented as the MI comb
is to be analyzed afterwards. The goal is to determine the quality of chaos and whether
it is random enough for possible applications. In order to do so, a bifurcation diagram
is created, the chaos attractor diagram is examined and the autocorrelation function
of the chaotic signal is determined. Especially, the effect of different parts of the setup
on the autocorrelation function of the chaotic signal is studied. Those different setups
are presented in this section.

MI Comb Generation

This section presents the setup for generating an MI comb and presents briefly the
different approaches used to characterize the chaos. A simple setup is shown in figure
4.7, where a TSL is used with an output power of 3 dBm and inserted in an erbium-
doped fiber amplifier (EDFA). The EDFA amplifies the signal to 1 W, or 20 dBm, which
is put into the previously set PC, that connects the EDFA and the resonator on the
chip. The PC is set during the Q-measurement, where the TM modes are suppressed.
Since mainly TE modes are present, the MI comb is generatable. The output signal
of the resonator is then injected into a fiber Bragg-grating (FBG) which reflects and
filters the pump wavelength out. Behind the FBG the signal is tapped by a 1:99 beam
splitter, where one percent of the signal goes into an optical spectrum analyzer (OSA)
and the other 99 percent are detected by a photodetector (PD), which is connected to
an oscilloscope (OSC). In order to comply with the maximum input power of the PD,
an optical attenuator is adjusted as needed. The specifications of the equipment used
is shown in Tab. 4.3.

The actual MI comb is generated by tuning the TSL. Since there is no need to
generate a soliton comb, extensive control setups are not needed to keep the generated
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TSL Santec TSL-710
EDFA PriTel PMFA-30-10

PD Thorlabs DET08CFC/M
ESA Siglent SSA 3032X-R
OSC Rhode & Schwarz RTE 1104

OSA 1 Yokogawa AQ6375B

Table 4.3: Equipment for Comb Generation

comb in place, as the MI comb is stabilizing itself. First, the wavelength of the TSL is
set close to a previously chosen resonance wavelength.

Here, the thermal resonance shift has to be taken into account, because the reso-
nances earlier were measured with a laser output power of just −10 dBm, but now the
resonator is pumped with 10 dBm. This leads to a heating up of the cavity so, that
the resonance wavelength is shifted to a longer wavelength. Therefore, a small shift
is added to the initially measured "cold" resonance, where usually a shift of around
100 pm is used. When trying to generate an MI comb, the "cold" resonance of the cho-
sen resonance wavelength is taken and prolonged by the above approximated thermal
shift. Note, a meticulously exact calculation of the thermal shift is not needed as the
pump laser does not need to be perfectly aligned with the resonance wavelength, but
only on a wavelength just below the "warm" resonance, because the laser is swept to
longer wavelengths anyway.

After choosing and setting the initial pump wavelength for the TSL, it is manually
increased, decreasing the detuning between pump laser and effective resonance wave-
length. This process of generating an MI comb by increasing the wavelength of the
pump laser is presented in figure 4.8. From subfigures (a) to (j) the pump wavelength
is increased and approaches the effective resonance wavelength of the chosen resonance.
The y-axes are showing the power and the x-axes the corresponding wavelength. For
this visualization no bandpass filter (BPF) is used, so the amplified spontaneous emis-
sion (ASE) noise is visible in the measured optical spectrum. First, only a Turing
pattern is visible, which then evolves into an MI comb.

As the pump wavelength is increased and moves closer to the resonance wavelength,
different stages of the comb are observed. First, only a continuous wave (CW) is
seen in addition with the ASE noise. Then, more comb lines start to emerge and the
Turing pattern appears and manifests itself. As the laser’s wavelength is elongated
an increasing number of comb lines adds itself to the existent Turing pattern, starting
to form the MI comb. By further tuning the wavelength, the spectral components of
the MI comb grow greater, finally resulting in a stable, high power, flat-top spectrum.
However, if the pump wavelength is increased even further beyond the stable regime of
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Figure 4.8: MI Comb Evolution

the MI comb, the comb disappears and leaves only the CW spectrum. Unfortunately,
the in this chapter presented approach on measuring the effective detuning is not
accurate enough and was not conducted in these experiments. If one was able to
measure the effective detuning exactly, one could compare the simulation results better
to the experimental results.

In addition to the optical spectra which were measured by an OSA, also the electrical
spectra for the base band, measured by the ESA, and the temporal chaotic signal,
measured by an oscilloscope, are analyzed. The ESA has a maximum bandwidth of
3.2 GHz and is provided with an electrical signal through an PD with a maximum
bandwidth of 5 GHz. The oscilloscope has an analog bandwidth of 1 GHz and samples
with 5 GSa s−1, but is in a few measurements only connected to a PD with a maximum
bandwidth of 100 MHz, but most of the measurements are done with a PD with a
bandwidth of 5 GHz.

The measured electrical spectra are investigated with different pump powers of the

67



4 Experiment

EDFA and a varied detuning. With the obtained data from the oscilloscope the chaos
can be analyzed with different approaches. First, a bifurcation diagram is presented
by plotting the local maxima of the temporal signal for each increase-step of the pump
wavelength. Then, a chaos attractor is tried to be reconstructed, using the approach
mentioned in 2.3. The most important measure to characterize the chaos might be the
autocorrelation and its FWHM because of its simplicity.

Since the focus on the chaos characterization and the later synchronization will
require a high use of the autocorrelation and crosscorrelation, the effect of different
experiment equipment has to be determined. Here, the effect of the FBGs and an BPF
on the autocorrelation, and with that also the crosscorrelation, is investigated.

Effect of Different Fiber Bragg-Gratings on Autocorrelation

When utilizing two rings and letting them synchronize, it needs to be investigated how
the FBGs are affecting the correlation between two signals. Assuming an ideal case
of two synchronized rings, the crosscorrelation between the leader and follower signal
should be close to 1, as the normalized Pearson coefficient is utilized to determine the
crosscorrelation. However, when the output of each ring is filtered by a different FBG
or when one is not filtered while the other one is filtered, it could lead to an impairment
of the crosscorrelation. Therefore, it is analyzed how significant this alteration is. The
above mentioned two cases are investigated in this section. Figure 4.9 shows the setup
for both cases. The specifications of the equipment are written in 4.4. First, the effect
of only one FBG on the signal is studied, as seen in figure 4.9a. The left part of this
setup, including the ring resonator, is generating the MI comb, while the right part
works as the measuring part. Here, only one resonator is used, which signal is split
into half using a 3 dBm-splitter afterwards, meaning the signal is split into two equal
parts. The first part is inserted in a FBG, getting its pump mode filtered out, and
then measured by an OSA and OSC. The second part of the split signal is directly fed
into a PD that is connected to the oscilloscope.

TSL Santec TSL-710
EDFA PriTel PMFA-30-10

PD Thorlabs DET08CFC/M
OSC Rhode & Schwarz RTE 1104

OSA 1 Yokogawa AQ6375B
OSA 2 Yokogawa AQ6370D

FBG 1 (variable) Alnair WTF-200
FBG 2 (variable) FLT Photonics Fiber Bragg Grating Tuner (Model:C)

FBG 3 (fixed) Tatsuta FBG-SMF-1550.5-99-50-LS-FPC-IM

Table 4.4: Equipment when investing the impact of FBGs
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4.1 Methodology

With both temporal signals at hand, the autocorrelation function with and without
FBG can be calculated. Furthermore, the cross correlation between both signals gives
insight about how the chaotic signal is changed by filtering it with an FBG.

The second variation of this setup, seen in figure 4.9b, utilized not just one but
two FBGs at the same time. Three different FBGs are investigated, two with variable
modes and one with a fixed reflected mode. As each FBG is a different model, the
filtering behavior differs, too. That is why, it is important to validate whether the same
signal inserted in two different FBGs is behind them still highly correlated or not. The
variable FBGs are set to optimally block the pump mode at 1551 nm, which is slightly
offset from the fixed FBG, which is set to 1550 nm.
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99
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PD PD

FBG50

50

(a) Effect of one FBG

TSL
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PD PD

FBG 1
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50
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99
FBG 2/3 

(b) Effect of two different FBGs

Figure 4.9: Setups to analyze the effect the FBG has on the correlation

Effect of a Bandpass Filter on Autocorrelation

In the case of reamplifying the output signal, it is important to filter the ASE noise
out, so that the ASE noise from the previous EDFA is not amplified again. To inves-
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Figure 4.10: Setup to analyze the effect of the BPF’s FWHM on the correlation

tigate the impact of the BPF, or more specifically the BPF’s FWHM, on the signal
and its autocorrelation function, the following setup is created, mostly similar to the
previous one, but with a BPF inserted between the EDFA and PC, Fig. 4.10. The
used equipment is shown in Tab. 4.5.

TSL Santec TSL-710
EDFA PriTel PMFA-30-10
BPF Yenista XTA-50

FBG 1 (variable) Alnair WTF-200
OSA 1 Yokogawa AQ6375B

PD Thorlabs DET08CFC/M
OSC Rhode & Schwarz RTE 1104

Table 4.5: Equipment when investing the impact of FBGs

4.1.4 Dual MI Comb Generation

Since chaos strongly depends on the initial conditions, other groups were able to syn-
chronize the chaos in semiconductor lasers which are driven by a common drive source.
In this section, a similar concept is tested, where two resonators are pumped by the
same laser. The setup can be seen in figure 4.11. The used equipment is shown in Tab.
4.6. Generating two MI combs simultaneously is similarly done as generating just one,
since the only thing that is changed is the number of resonators. The resonators are on
the same chip in the same area of that chip, which should make the deviation due to
fabrication errors small enough, that the chaos only depends on the laser input. This
hypothesis is evaluated by the dual MI comb generation.

Important to note, the beam splitter in front of the polarization controllers (PCs)
is polarization maintaining (PM). First, the PCs are set to polarize the incoming light
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4.1 Methodology

to suppress the TM modes, which is done in a similar manner as before in the Q-
measurement above in Fig. 4.2. After inserting the EDFA, the TSL’s output power
can be increased to 3 dBm and amplified by the EDFA to 1 W, which is then split
by the beam splitter, so that the input onto the photonic chip for each resonator is
effectively given by 500 mW. MI combs in each resonator are generated by sweeping
only one laser which is amplified by only one EDFA but then inserted into two different
PCs, slightly changing the initial conditions for each resonator. After generating the
MI combs, the cross correlation between both combs is calculated from the measured
temporal chaotic signal.

TSL

EDFA

5 8

leader

follower

50
50

4 9

OSA 1

OSA 2

1

99

1

99

OSC

PD PD

FBG 1

FBG 2

Figure 4.11: Setup for Dual MI Comb Generation

TSL Santec TSL-710
EDFA PriTel PMFA-30-10

FBG 1 (variable) Alnair WTF-200
FBG 2 (variable) FLT Photonics Fiber Bragg Grating Tuner (Model:C)

OSA 1 Yokogawa AQ6375B
OSA 2 Yokogawa AQ6370D

PD Thorlabs DET08CFC/M
OSC Rhode & Schwarz RTE 1104

Table 4.6: Dual Comb Generation

This short section dealt with the generation of two MI combs in two different but
similar resonators on the same chip with only one laser, investigating whether a common
drive solution might be feasible.

4.1.5 Synchronization Setup

Since generation of two MI combs at the same time was already shown in the previous
section, the goal is now to cascade them in a master-follower configuration to achieve
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synchronization as in the simulation. In the simulation, the output from the leader
resonator is simply injected into the follower resonator with adjusted power. In order
to replicate this scenario in the experiment, the setup shown in figure 4.12 is used.
The used equipment is summarized in Tab. 4.7. Two different setups are investigated.
While one setup is without any additional amplification of the leader signal 4.12a, the
other setup also utilizes an EDFA to amplify the output signal of the leader comb,
4.12b. As in the simulation, MI combs in each resonator are generated, which is done
with only one laser. The output of the leader comb is then taken and inserted in the
follower comb, which is done by a variable optical attenuator (VOA) which is first
set to attenuate the signal by 60 dBm to reduce the attenuation step-wise for each of
the following measurements. Furthermore, in the setup scheme a switch between the
laser and the follower resonator can be seen, which is realized in the experiment by
inserting a terminator or removing it, in order to turn the pump for the follower off or
on, respectively. Turning the pump for the follower resonator off is important to set
the PC between the output of the first resonator and the input of the second resonator,
so that the resonances which are seen behind the follower resonator are all induced by
the polarization of that PC.

TSL Santec TSL-710
EDFA PriTel PMFA-30-10

FBG 1 (variable) Alnair WTF-200
FBG 2 (variable) FLT Photonics Fiber Bragg Grating Tuner (Model:C)

OSA 1 Yokogawa AQ6375B
OSA 2 Yokogawa AQ6370D

PD Thorlabs DET08CFC/M
OSC Rhode & Schwarz RTE 1104
BPF Alnair TFF-15-1-PM-L-050-55

Second EDFA PriTel LNTFA-15-MA

Table 4.7: Equipment for synchronization setup

Not much changes for the second setup with the EDFA to amplify the output of the
leader resonator, except an additional BPF after splitting the pump laser before the
light goes into the leader resonator. This is done to remove the ASE noise so that the
EDFA in the secondary amplification stage is not amplifying the ASE noise of the main
EDFA but only the signal. To set the third PC, right behind the VOA and second
EDFA, it is not possible to conduct the laser scan anymore to find out how the light
is polarized, because of the EDFA. Instead of sweeping the wavelengths of the laser
as above mentioned, a different approach is used to set the polarization of the PC
here. When generating a Turing pattern, it can be observed that the distance between
the comb lines is smaller for TM modes than it is for TE modes. By changing the
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polarization so that mostly TE modes propagate, the comb lines of the Turing pattern
comb move farther apart from each other, the maximum achievable distance between
these comb lines is when the PC is optimally set. Another way to check for the correct
polarization is to utilize a power meter (PWR). Since the comb becomes broader with
the correct polarization, setting the PC so, that the PWR measures the maximum
achievable power, is also a way to determine the setting for an optimal polarization.
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Figure 4.12: Synchronization Setup via Cascading

The goal is to achieve synchronization of the cascaded resonators. A requirement for
synchronization is the high correlation between both signals, and usually the measure
used by other groups in the same field to determine whether two chaotic source are
synchronized or not. The correlation value that has been established as sufficient for
applications is a correlation of 90%, meaning a cross correlation between both signals
exceeding this value is required. Furthermore, it has to be proved that this correlation
value is because of the actual synchronization and not just the leader signal measured
once again without coupling into the follower ring. This can be done by for example just
inserting the lower half of the comb into the second follower, and measuring the upper
half of the comb of each resonator to determine the cross correlation between each other.
But since the symmetric modes of the MI comb exhibit a cross correlation, an even
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λfbeat

Figure 4.13: Turing Pattern Synchronization Optical Spectrum

better method would be to filter a few comb lines with their respective symmetrical
counterpart out, insert that filtered comb into the follower one, and measure behind
both combs only the previously filtered out part.

At last, the optimal way to be sure that only the light of the follower cavity is
measured is to use an add-drop resonator. An add-drop resonator enables to try to
couple the leader light into the follower resonator without it impairing the measurement
of the follower signal’s measurement appearing in the measurement of the follower
cavity, resulting in proof of synchronization, once a small correlation between leader
and follower is achieved, because both signals can not simply mix together.

Turing Pattern Synchronization

When trying to synchronize Turing pattern combs, a different approach than above can
be applied. Let there be two different Turing pattern combs, depicted in figure 4.13
by the red and the blue comb. In this example they are shifted by a frequency fbeat

and the power of each spectral component differs by some factor. The same approach
as above is conducted to let them synchronize, but this time not the temporal signal
of each comb is measured, but the temporal signal of both combs together. Optimally,
one would filter out a pair of comb lines from the overlapped spectrum, marked by
the green rectangle. When measuring these two spectral components, a beatnote can
be measured, corresponding to fbeat, the frequency both combs are shifted apart from
each other. If both combs were to synchronize, meaning the follower Turing pattern
would align with the leader comb, the beatnote would disappear.

In comparison with the previous synchronization setup, an additional VOA is used,
namely between the laser and the follower resonator to have better control over the ratio
between pump and leader signal that goes into the follower resonator. Furthermore,
the oscilloscope is not used, but the ESA, where both signals are first coupled together
with a 3 dB coupler, filtered by a BPF, so that only one comb line pair passes through,
and detected by a 5 GHz PD, that sends the electrical signal of both overlapping spectra
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to the ESA.

4.2 Results and Discussion

This section covers the results and the concurrent discussion of the above described
experimental setups. Each experimental setup depends on the outcome of the previous
setup. That is why, both, the results and discussion, are treated in the same section.

Starting with the Q-Measurement, the resonators are described, which is followed by
the MI comb characterization, or rather the chaos characterization. Then, the setup is
slowly built up, where only one laser is used to pump two different cavities, which might
have a higher possibility to induced synchronization in those cavities. Furthermore, as
written above, the resonators are located on the same chip, minimizing the effect of
fabrication deviations between different resonators. In the end, the injection setup is
investigated with respect to the synchronization of two chosen resonators.

4.2.1 Q-Measurement
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Figure 4.14: Transmission Spectra for the different resonators on the chip

Conducting transmission spectrum measurements, one can quickly determine the
resonance wavelengths of each resonators, and then approximate the Q-factor of the
investigated resonator. In Fig. 4.14a, the transmission spectra for the five different
resonators on the investigated chip can be seen. The numbers in the legend are indi-
cating the numbers of the used fibers connected to the chip. As the measured power
is plotted against the wavelength, it seems as if each resonance mode is exactly the
same for the different cavities. However, looking closer to only one resonance mode
and comparing that across the five resonators small differences emerge, Fig. 4.14b.

For now, it does not really matter, which cavity is chosen for the next experiment.
But, when trying to synchronize the cavities, the parameters should be as close as
possible to simplify the synchronization process.
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4.2.2 MI Comb Characterization

In this section, the characteristics of the MI comb and its inherent chaos is investigated,
to build a better comprehension. The focus lies first on the simple generation of an
MI comb, from which the signal is analyzed afterwards, approximating the strange
attractor of the chaotic source. Then the effects of the different FBGs and a BPF are
studied.

MI Comb Generation

Similarly to the MI comb generation in Fig.4.8, the pump laser is swept to longer
wavelengths, but instead of the optical spectrum, the base band in the electrical RF
spectrum is analysed. Furthermore, the pump power, i.e. the output of the EDFA is
varied, as each data set, meaning the received power for each frequency component, is
measured. The results are shown in Fig.4.15, where the output power of the EDFA is
changed from 200 mW to 1000 mW in 200 mW-steps, from the top figure to the bottom
figure. As the detuning is decreased and the pump wavelength is approaching the
resonance wavelength, a peak is arising. This peak moves to higher frequencies and
widens, while the pump power is increased. Moreover, at a certain detuning level,
sharp and noticeable peaks are emerging, which belongs to a stage between the Turing
pattern and the known MI comb, which is called MI phase 1 [92]. The electrical
spectrum corresponding to the smallest detuning and the highest power output of the
cavity is also in good agreement with the simulation results of the chaotic base band,
which validates the simulation’s approach.

In the next step the chaotic output of the comb shown in figure 4.16a is analyzed.
While the MI comb in this measurement has no flat-top spectrum, it still exhibits
chaotic waves, which are shown in Fig. 4.16b and 4.16c, with ranges of 5 µs and
50 ns on the x-axis. The voltage from the photodetector is measured and its mean is
substracted, meaning only the RF signal remains. When considering the 5 µs clipping
of the temporal signal, it does look as if just amplified noise is measured. Viewing
closer at the 50 ns cutout, gives a better feeling for the signal, as it does not look that
much like noise.

The Analysis of this this chaotic waveform, is done by creating the attractor plots
of the said signal, according to the the methodology mentioned in Chap. 3. Attractor
portraits are investigated, to confirm the chaotic behavior of the temporal waveform
and to find any possible strange attractor. In Fig. 4.17, the attractor is plot by shifting
the data by a value ∆T which is here arbitrarily set to 0.1 ns, 1 ns and 10 ns, as seen
in 4.17a, 4.17b and 4.17c, respectively. In these figures the effect of choosing the right
value for ∆T becomes noticeable. The smaller the time shift is, the more the portrait
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Figure 4.15: Electrical Spectra for different pump powers
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Figure 4.16: MI comb and its temporal chaotic waveforms, horizontal scaling differs
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Figure 4.17: Attractor Portraits for different ∆T

changes into a diagonal line, in correspondence to the autocorrelation function of the
chaos.

To find the optimal value for ∆T that shows the highest linear independence, the
mutual information of the chaotic signal is analyzed.

In Fig. 4.18, the calculated mutual information can be seen with respect to the time
shift ∆T . In order to calculate the mutual information, the probability density has
to be assumed which is done by sorting the measured points into a histogram. An
example histogram can be seen in the inset of Fig. 4.18. According to Fraser [90], one
of the minima in the mutual information has to be chosen and the corresponding ∆T

value is used to shift the initial signal, to plot the attractor portrait.
Furthermore, mutual information is a measure which shows just like the the cross

correlation function, how correlated two signal are. If two signals have a mutual infor-
mation of 0 bit, there is nothing to be concluded over the other signal, when knowing
one signal. Thus, evaluating the mutual information might be an interesting approach
to proof whether synchronization between two signals is present or not, but the common
procedure is to calculate the cross correlation.

The determined optimal temporal shift is ∆T = 1.3 ns and when shifting the signal
by that amount, the attractor portrait as shown in Fig. 4.19 is obtained. In this
attractor plot, too, no strange attractor is visible. However, even if a hint for a strange
attractor is not noticable, the fact that the signal is chaotic is clearly seen. A periodic
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Figure 4.18: Optimization by mutual information technique [90]

signal or even a quasi-periodic signal would show a ring-shaped attractor portrait.
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Figure 4.19: With optimized ∆T = 1.3 ns
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Figure 4.20: Output of the ASE noise behind each FBG

Comparing these chaotic attractors with the chaotic attractor obtained in the sim-
ulation, see above Fig. 3.6, similarities can be seen. The time delay T is in both cases
determined by analysing the mutual information, which gives reason to compare both
in this context. While the values on the axis are different, because the experimental
values are without the DC-component of the chaotic signal, the shapes and the direc-
tion of the trajectories match the simulation. Therefore, these chaos attractors validate
the simulation.

Effect of Different Fiber Bragg-Gratings on Autocorrelation

After confirming the chaotic behavior of the MI comb, in this section, the effect of
different Fiber Bragg-Gratings (FBGs) on the signal is investigated. First, consider
the optical spectra of the three different FBGs, shown in Fig. 4.20. All optical spectra
show here the ASE noise of the EDFA in front of the cavity. The pump laser is not
swept, so that no comb is generated, and no BPF is inserted between the PC and
EDFA.

The figures show the blocking performance of the pump mode for the different FBGs.
The first and second FBG are both variable with a small filtering-bandwidth and can
be set directly onto the pump wavelength. The third FBG is fixed at 1550 nm, but has
a broader blocking width, so that the pump mode is also suppressed.

For the following experiment, the first FBG, FBG 1, is chosen, as it shows the best
highest and most accurate blocking performance. Now, an MI comb is generated, which
can be seen in Fig. 4.21, the output of that comb is then split into two lines, and each
line is investigated on its own.

The autocorrelation in front and behind the FBG can be seen in Fig. 4.22a and
4.22b, respectively. Suppressing the pump mode by the FBG seems to smooth out the
autocorrelation function for higher time delays. However, despite the autocorrelation
functions in front and behind the FBG look very similar, when calculating the cross
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Figure 4.22: Effect of one variable FBG on the Signal

correlation between both signal lines, the correlation decreased. So, the same signal is
split, one half is transmitted through the FBG while the other half is directly measured.
The cross correlation between these two signals is measured and a correlation of just
around 70 % can be seen, Fig. 4.22c.

Instead of using just one FBG, two FBGs in tandem are employed. Since three
different FBGs are available, two setups are studied. One setup is splitting the signal
behind the cavity and transmitting the signals through each FBG. The other setup
does the same, but instead of transmitting the signal through FBG 2, the second
signal is transmitted through FBG 3, the one with the fixed wavelength. The results
are shown in Fig. 4.23, where two characteristics are visible. The fibers connected
to the second and to the third FBG are slightly differing in length. But the more
important characteristic is the cross correlation between the first and second FBG as
it is higher than the correlation between the first and third FBG. Therefore, in the
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Figure 4.23: Crosscorrelation between the output of different FBGs
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Figure 4.24: Signal Deviation between both filtered signal lines

following experiments, the first and second FBG is used. Both are variable FBG with
a similar blocking behavior, which makes it comprehensible why they exhibit a higher
correlation than in the case where the fixed FBG is used which block more wavelengths.

To show the concrete differences between the first and second FBG, the shifted
temporal waveforms are depicted in Fig. 4.24. The right figure shows the MI comb
after the respective FBG, while the figure on the left compares the temporal waveforms.
Optimally, a correlation of 100 % is wanted, but in this case only a correlation of 97.4
% is determined, which is probably due to the FBGs still being different, even though
they are both adjustable. Nevertheless, such a high correlation is enough, to verify
synchronization later on.

Effect of a Bandpass Filter on Autocorrelation

In Fig. 4.25, the effect the BPF in front of the PC can have on the autocorrelation
function, when the FWHM of the BPF is changed. While the autocorrelation function
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Figure 4.25: Effect of the FWHM of BPF on the autocorrelation function
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Figure 4.26: Leader and Follower Comb

is basically the same for higher FWHM of the filter function, when setting the FWHM
to just 150 pm, the autocorrelation function broadens.

4.2.3 Dual MI Comb Generation

In this section, two MI combs are generated with the use of just one laser. This is
not possible for any two microrings, but only for very similar ones. Previously in the
Q-measurement, the resonance wavelengths of each resonator were determined. By
choosing two resonators which are close to each other, it is feasible to generate two MI
combs at the same time, which is shown in Fig. 4.26.

Although they are powered by the same pump laser, the emitted chaotic waveforms
are completely different, which is shown in Fig. 4.27. The cross correlation function is
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Figure 4.27: Cross correlation between Leader and Follower
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Figure 4.28: Cross correlation without amplifying the output from the leader

very close to zero at any given moment.

4.2.4 Synchronization Setup

This section is about the synchronization setup. The first setup, where the output from
the first cavity is not yet amplified yielded a low correlation between the leader and
the follower output. The cross correlation function can be seen in Fig. 4.28, where the
attenuation between the output of the leader and the input of the follower is changed.
The lower the attenuation the higher is the correlation. However, a correlation of just
about 3 % is not usable.

To increase the correlation between both resonators, an EDFA is inserted between
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Figure 4.29: Cross correlation with amplifying the output from the leader but without
pumping the second cavity

Figure 4.30: Cross correlation with amplifying the output from the leader

the output of the leader and the input of the follower ring. With that, two different
settings are measured. First, as shown in Fig. 4.29, the cross-correlation when the
second ring is not powered, meaning only the signal from the leader cavity, is measured
as it is transmitted through the waveguide next to the follower resonator. There is no
visible effect for the whole range of set attenuations between the second EDFA and the
follower ring.

The second setting was pumping the follower cavity as well as generating an MI
comb in it, then inputting the signal from the leader cavity into the follower cavity.
And it is visible from the cross correlation in Fig. 4.30 for high attenuations, that both
signals are uncorrelated. But, the more the attenuation is lowered, the higher becomes
the cross correlation between leader and follower.

This might either be both signals just being mixed together or an actual partial
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synchronization due to injection of the leader comb into the follower resonator.

4.2.5 Expected Correlation

In this section a formula for the expected cross-correlation of the superposition of two
uncorrelated signals will be derived, in order to investigate, whether the measured
cross correlation is a hint for synchronization or not. To have a measure for the cross-
correlation, the sample Pearson correlation coefficient is used, but the derivation might
be easier from the general Pearson correlation coefficient.

ρxy = cov(x, y)
σxσy

(4.4)

where cov(x, y) is the covariance of signals x and y and σx and σy are the respective
standard deviation. The covariance for a set of samples is defined as:

cov(x, y) = 1
N − 1

N∑
i=1

(xi − x)(yi − y) (4.5)

where N is the number of samples in the set, and x and y are the respective means of
each signal. The mean is defined as:

x = 1
N

N∑
i=1

xi (4.6)

Furthermore, the standard deviation of a sample is defined as:

σx =

√√√√ 1
N − 1

N∑
i=1

(xi − x)2 (4.7)

When inserting 4.5 into 4.4, the sample Pearson correlation coefficient can be obtained:

rxy = 1
N − 1

∑N
i=1(xi − x)(yi − y)

σxσy

(4.8)

Which simplifies to

rxx = 1
N − 1

∑N
i=1(xi − x)2

σ2
x

(4.9)

when the auto-correlation is calculated. Now, let a third signal, z, be the weighted
superposition of signals x and y.

z = αx + βy (4.10)
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To simplify the calculation, the weights are normalized to α + β = 1. Additionally, it
is required that signals x and y are uncorrelated. Which means, that the covariance
disappears, cov(x, y) = 0, resulting in:

N∑
i=1

(xi − x)(yi − y) = 0 (4.11)

Lastly, the linearity of the mean is required:

αx + βy =
N∑

i=1
αxi + βyi =

N∑
i=1

αxi +
N∑

i=1
βyi = α

N∑
i=1

xi + β
N∑

i=1
yi = αx + βy (4.12)

To calculate the cross-correlation between x and z, the above reviewed sample Pearson
correlation coefficient 4.8 is used and the signals are inserted.

rxz = 1
N − 1

∑N
i=1(xi − x)(zi − z)

σxσz

(4.13)

Knowing the signal z is the weighted superposition of x and y, 4.10, the cross-correlation
rxz can be expressed in terms of x, y and the standard deviation of z, σz.

rxz = 1
N − 1

∑N
i=1(xi − x)(zi − z)

σxσz

= 1
N − 1

∑N
i=1(xi − x)((αxi + βyi) − αx + βy)

σxσz

The mean of z is now simplified by the previously derived linearity of the mean 4.12.

rxz = 1
N − 1

∑N
i=1(xi − x)(αxi + βyi − αx − βy)

σxσz

= 1
N − 1

∑N
i=1(xi − x)(αxi − αx)

σxσz

+ 1
N − 1

∑N
i=1(xi − x)(βyi − βy)

σxσz

= 1
N − 1

∑N
i=1(xi − x)(αxi − αx)

σxσz

+ 1
N − 1

∑N
i=1(xi − x)(βyi − βy)

σxσz

= α

N − 1

∑N
i=1(xi − x)(xi − x)

σxσz

+ β

N − 1

∑N
i=1(xi − x)(yi − y)

σxσz
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With the requirement that the signals x and y are uncorrelated, 4.11, one of the addends
disappears.

rxz = α

N − 1

∑N
i=1(xi − x)(xi − x)

σxσz

+ β

N − 1

=0︷ ︸︸ ︷
N∑

i=1
(xi − x)((yi) − y)

σxσz

= α

N − 1

∑N
i=1(xi − x)(xi − x)

σxσz

σx

σx

= α
1

N − 1

∑N
i=1(xi − x)2

σ2
x︸ ︷︷ ︸

rxx

σx

σz

= α
σx

σz

rxx

Thus, the cross-correlation can be expressed as the ratio of the respective standard
deviation of x and z multiplied with the factor α, and dependent on the auto-correlation
function of x. Now, the standard deviation of the superimposed signal, σz has to be
calculated in terms of the standard deviation of signal x, σx. Again, with 4.10

σ2
z = 1

N − 1

N∑
i=1

(zi − z)2

= 1
N − 1

N∑
i=1

((αxi + βyi) − αx + βy)2

and the linearity of the mean, 4.12, the formula can be similarly rearranged.

σ2
z = 1

N − 1

N∑
i=1

((αxi + βyi) − αx + βy)2

= 1
N − 1

N∑
i=1

(α(xi − x) + β(yi − y))2

When applying the binomial theorem, the requirement 4.11 can be employed and re-
duces the equation to two addends.

σ2
z = 1

N − 1

N∑
i=1

α2(xi − x)2 + β2(yi − y)2 + 2αβ (xi − x)(yi − y)︸ ︷︷ ︸
=0

89



4 Experiment

After extracting α and β from the sums, the definition for the standard deviation, 4.7,
is applied, so that a simple relation is left.

σ2
z = 1

N − 1

N∑
i=1

α2(xi − x)2 + 1
N − 1

N∑
i=1

β2(yi − y)2

= α2 1
N − 1

N∑
i=1

(xi − x)2 + β2 1
N − 1

N∑
i=1

(yi − y)2

= α2σ2
x + β2σ2

y

With this expression for σz we get the cross-correlation, rxz, that only depends on the
values of signals x and y, enabling the calculation of the correlation in case of both
signals being ideally mixed together.

rxz = α
σx

σz

rxx = α
σx√

α2σ2
x + β2σ2

y

rxx (4.14)
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Figure 4.31: Spectra and temporal waveforms measured behind the follower ring

Utilizing measurements from the setup, Fig. 4.12b, the respective standard deviation
the factors α and β are calculated to be inserted in the above derived formula. In order
to calculate the factors α and β, it is assumed that the leader signal has no effect on
the ring resonator and two cases are investigated to measure the respective Power.
First, the leader comb is transmitted through the waveguide which is adjacent to the
follower resonator, while the pump to the follower is turned off. This can be seen in
Fig. 4.31 on the left side, where the upper graph shows the comb signal of the leader
resonator measured behind the follower ring. And the lower graph is the recorded
temporal signal, also behind the follower resonator. The spectrum can then be used
to calculated the power of the leader which is arrives behind the follower ring, and the
temporal waveform to calculate the standard deviation.
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4.2 Results and Discussion

Second, the leader comb is blocked and a simple MI comb is generated in the follower
ring, which can be seen on the right side of Fig. 4.31. The temporal signal of the
follower comb is seen below the spectrum. These data sets are used to calculate the
power and the standard deviation, respectively. Knowing the power of each comb,
enables the calculation of the factors α and β:

α = PL

PL + PF

= 0.31 (4.15)

β = PF

PL + PF

= 0.69, (4.16)

where PL and PF are the powers in of the leader and the follower comb, measured
behind the follower ring, respectively.

Thus, the standard deviation of the mixed signal evaluates to:

σmix =
√

α2σ2
L + β2σ2

F = 3.6 × 10−3, (4.17)

where σL and σF are the standard deviations of the previously measured temporal
signals in Fig. 4.31 for the leader and follower comb, respectively.

Finally, the expected maximum correlation between two signals which are ideally
mixed together is evaluated according to Eq. 4.14:

rmix = α
σx

σmix

= 46.32% (4.18)

The expected correlation, when both signals are just mixed together, is higher than
the highest measured correlation value in Fig. 4.30, which is just around 27%. Hence,
not even partial synchronization was achieved. But to end on a positive note, with
this formula, a minimum limit is set which has to be overcome, in order to show chaos
synchronization.
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5 Summary & Outlook

5.1 Simulation

Utilizing the Lugiato-Levefer equations, microresonator rings were simulated in dif-
ferent setups. A chaotic attractor was determined by employing the minimum of
mutual information function depending on the difference time delay between original
and shifted signal. Simulating two microrings on their own without being connected,
demonstrated the uncorrelatedness of the fields emitted by the rings. When the leader
resonator’s output is injected into the follower resonator by choosing the correct in-
jection parameter and controlling the follower resonator with a suitable pump power,
while keeping all other parameters the same for both resonators, synchronization of
both fields inside the rings was observed. Furthermore, an analysis of chosen param-
eters took place, where the parameters of the follower ring were investigated, that
showed insightful conditions for the synchronization. Finally, the effect of noise in the
transmission line was investigated, our model shows a high robustness against external
noise, which the transmission line might be prone to.

5.2 Experiment

In the experimental part, an array of the same resonators was used, which were all
fabricated on the same chip. First analysis revealed that the resonator exhibits a
similar chaotic attractor as the simulation, which validates the simulation results. The
single resonator was also used to examine the base band of the in the chaotic regime for
different pump powers when lowering the effective detuning. That revealed what effect
the pump power has on the chaotic spectrum, where the bandwidth is broadened with
an increasing pump power. In order to proof synchronization once high correlation
is achieved, the equipment’s effect on the correlation was analyzed, where the same
chaotic signal was split and injected into different FBGs, which showed that they
worsened the correlation. However, the worsening is marginal when using FBGs that
are similar to each other. Then, similarly to the simulation an experiment generating
MI combs in two resonators on the same chip was conducted. It revealed, that even
though both resonators were on the same chip next to each other and pumped by
the same laser at the same time, the spectra were different and the cross correlation
function of the emitted temporal signals was 0 over the recorded time. To increase
the chance of seeing synchronization in the two microresonators, the output of the
leader resonator was injected into the follower resonator with a variable attenuator
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in between, to adjust the injected power. However, contrary to the simulation, no
synchronization was achieved, hinting the presence of parameter that might have an
effect on the synchronization but is not taken into account in the simulation. Even
when there is no comb generated in the follower comb, the transmitted leader comb is
not injected into the follower comb, although the simulation suggests otherwise. In the
end, a proof is delivered to give a measure for the minimum cross correlation which
has to be achieved in order to have evidence for synchronization.

5.3 Outlook

Questions still remain. A concrete analysis with respect to the proposed chaos secure
communication protocol has to be conducted in order to proof the assumptions made
numerically. Experimentally, it was already shown that one can not simply take the
same microresonator, let the other chaotic signal be injected into it and hope for
synchronization, which suggests the presence of a parameter that is not implemented
in the simulation. To note, in the simulation, both rings were pumped by different
pump lasers and still achieved synchronization.

One of the biggest challenges, and what might be the reason for not being able to
synchronize both rings, is the setting of the lights polarization. As the comb generation
and the coupling into the rings strongly depends on the polarization of the incoming
light, it is crucial to inject correctly TE-polarized light into each cavity, which is difficult
in the current approach. Therefore, employing a chip which maintains the polarization
and using only devices which maintain the polarization between the resonators, might
help to achieve better injection of the leader comb into the follower ring.

Once high correlation in the experiment is reached, different approaches can be
utilized to proof that the high correlation is caused by chaos synchronization. Right
now, it might not be clear whether the signal behind the follower ring is the actual
output of the follower or the output of the leader ring, since both rings are cascaded.
Therefore, employing add-drop resonators to filter the leaders signal out would solve
this problem. Another way to proof synchronization could be achieved by injecting for
example only the first half of the spectrum (every wavelength smaller than the pump
wavelength) into the follower ring and measuring the latter half (every wavelength
longer than the pump wavelength) of both resonators spectra.

As synchronization is already achieved numerically, the application of chaos commu-
nication could be implemented and analyzed numerically. The actual bandwidth for
chaos communications using two cascaded microring resonators should be estimated
using a simulation approach.
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