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Abstract

The optical spectrometer is an instrument used to measure the spectrum
of an input light source, characterizing its wavelengths and intensities.
Spectrometers have important applications in a variety of fields including
chemical and biological composition analysis, space exploration. However,
conventional spectrometers use long focal lengths to achieve high precision,
which makes them large and expensive. The size and cost limit their
applications. Therefore, the miniaturization of spectrometers is an important
topic, and there have been many contributions made to on-chip size
spectrometers in the last decades. One obstacle is that most of these small-
size spectrometers are suffering from fabrication errors, preventing them
from reaching the designed precision. In the previous work from Tanabe’s
group, we presented a reconstructive spectrometer using random photonic
crystal waveguides. The structural randomness of the photonic crystal from
fabrication error causes wavelength-sensitive light localization patterns,
which can be used to reconstruct the input spectrum by an algorithm.

In this work, we continue to develop the device by investigating its
geometry parameters like waveguide section length, section width reduction
rate, and disorder level. We make numerical simulations for designs
with different parameters and analyze their performances as spectrometers.
The target is to find some ranges of parameters to achieve an optimal
balance between resolution, spectral range, and physical size for our on-
chip spectrometer. The development of on-chip spectrometers has potential
applications in new fields such as portable sensing devices, and we hope
this work can pave the way for a low-cost and mass-produced on-chip
spectrometer.

Chapter 1 presents the background of the research.
Chapter 2 describes the basic theory of photonic crystal waveguide and

Anderson localization, how they are utilized to design a reconstructive
spectrometer, as well as the objective of this work.

Chapter 3 introduces the simulation method and setups used for this
work.

Chapter 4 numerically investigates how the geometry parameters affect
the performance of the spectrometer by showing simulation results.

Chapter 5 summarizes the work and discusses future issues of the
research.
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Chapter 1

Introduction

1.1 Background of optical spectrometer

An optical spectrometer is a scientific characterization instrument that can
measure physical properties of an input light over a specific electromagnetic
spectrum range. It usually measures the wavelengths and intensities of
light, producing spectral lines. Because of the fact that each element in the
periodic table has a unique emission or absorption light spectrum, optical
spectrometers have served as one of the most important exploratory tools for
composition analysis in many fields like physics, chemistry and astronomy.

The famous early study of spectroscopy is Issac Newton’s experiment of
splitting up white light into component colors by refraction through a prism.
The rainbow colors can be re-combined into a white light through another
prism, which proves that the colors are separated from white light rather
than newly generated by the prism. The word "spectrum" was first applied
by Newton and he is generally regarded as the founder of spectroscopy.

Modern benchtop laboratory spectrometers are generally dispersive-
type that contains bulky and expensive optical components, moving parts,
and long optical paths. Due to the intrinsic feature of dispersive optics,
longer focal lengths lead to more separated wavelengths when reaching
detector arrays and reliably increase the resolution of spectrometers,
which is the first priority in laboratory situations. However there are
also demands of spectrometers in outdoor or industrial situations where
indicative, instantaneous results are preferable than transporting samples to
a laboratory and waiting for ultra-high resolution results. For example, the
soil analysis, monitoring of food industry production lines. In these cases, the
size, cost and power consumption of conventional laboratory spectrometers
limit their applications. Therefore, the miniaturization of spectrometers is a
crucial topic that can open up the possibilities of spectrometer for up-coming
applications like smartphone-based and wearable devices.

1.2 Miniaturization of spectrometer

Since the early 1990s, miniaturized optical spectrometers have been
developed for decades, and can be roughly summarized into four categories.
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Figure 1.1: Different underlying strategies for miniaturized spectrometer
systems that have emerged over the past 30 years. From Ref. [1]. (A)
Miniaturized dispersive optics type. (B) Tunable or arrayed narrowband
filters type. (C) Fourier transform type. (D) Computational spectral
reconstruction type.

1.2.1 Dispersive optics type

Dispersive optics that split light towards spatially separated detectors
are the earliest methods used for spectrometers. The dispersions
were compromised by prisms in early days. In modern conventional
spectrometers, the task is usually accomplished by a diffraction grating,
combined with an optical path and a detector array.

Light incident on a grating is diffracted following the equation:

d(sin α ± sin β) = mλ (1.1)

where λ is the light’s wavelength, d is the spacing between grooves on
the grating, α is the incident angle of light, and β is the diffracted angle
of the light leaving the grating. The left side of Equation 1.1 represents
the path difference between wavefronts diffracted from two neighboring
grooves, where the ± sign will be plus for reflection grating and minus
for transmission grating. When m is an integer, constructive interference
happens for diffracted light wavefronts, and light with diffracted angle β
can be observed and collected.

Advancements in micro and nano fabrication technologies make it
possible to scale down dispersive spectrometers to on-chip sizes with
reasonable costs. The challenges are concentrated on the miniaturization
of three key components: the diffraction grating, the optical path, and
the detector array. The decrease of optical path length significantly helps
miniaturize the footprint of the device, but can severely lower the spectral
resolution at the same time. Researchers have came up with various methods
to compensate the problem. For example, use concave gratings to save the
space of collimation components and focus light to detector elements to
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(a) (b)

(c) (d)

Figure 1.2: Dispersive optics type microspectrometers. (a) Schematic of a
reflective concave grating. From Ref. [2]. (b) Schematic of a buried grating
under a planar waveguide. From Ref. [3]. (c) Schematic of a photonic
crystal-based grating. From Ref. [4]. (d) Schematic of a planar holograms-
based grating. From Ref. [5].

increase the resolution [2], use internal reflections of planar waveguide
to compress the free space dimension of optical paths [3]. There are also
waveguide-based in-plane solutions that use planar photonic crystals [4] or
planar holograms [5] as dispersion components.

Besides improving the configurations of diffraction grating and optical
path, increasing the detector’s density within a given area is another
direction to enhance the spectral resolution of spectrometer. However, as
the scale decreases, the quality of both diffraction grating and detector array
becomes much more sensitive to fabrication errors like etching-induced
surface roughness, preventing the expected behavior of disperive optics and
limiting further increase of spectral resolution.

1.2.2 Narrowband filter type

A narrowband filter can selectively transmit light within a specific
wavelength range, producing a narrowband spectral line. Using a tunable
narrowband filter with time varying transmissive properties, or an array
of multiple narrowband filters with unique transmitted wavelengths each,
the spectrometer can operate over a consecutive wavelength range. A
key advantage of narrowband filters type spectrometers over dispersive
optics type systems is that the optical path length doesn’t affect the spectral
resolution dominantly. The separation between filters and detectors can
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(a) (b)

Figure 1.3: Tunable narrowband filter-based spectrometers. (a) Left:
Schematic and working principle of the Fabry-Pérot interferometer. Right:
Transmission spectra of the Fabry-Pérot interferometer (CWL: center
wavelength, FSR: free spectral range, FWHM: full width at half maximum).
From Ref. [6]. (b) Schematic of a tunable Fabry-Pérot filter with MEMS
electrostatic actuators. From Ref. [7].

be made extremely small, thus dramatically reduce the footprint of whole
system.

A typical structure for tunable narrowband filter is the Fabry-Pérot optical
cavity made from two parallel mirrors. The spectral response of a Fabry-
Pérot resonator is based on interference between the light injected in and
the light reflected by mirrors. Only when the optical distance between
the two mirrors is an integral multiple of the light’s half wavelength λ/2,
constructive interference occurs and the light is resonated and has maximum
transmittance. The response of a Fabry-Pérot filter can be described by
spectral lines with Airy distributions. The spectral resolution of these Fabry-
Pérot spectrometers is decided by the FWHM (full width at half maximum)
of transmission peaks, and the transmission spectra can be tuned during
operation by varying the optical path length. The most common way is using
MEMS (micro electro mechanical systems) structures to tuning the separation
distance between two mirrors by an electrostatic [7][10] or piezoelectric [11]
actuator.

The tunable narrowband filter spectrometer can operate with a single
filter, but the spectra has to be scanned in a time sequence. In applications
where instantaneous measurements are required, narrowband filter arrays
and linear variable filters can offer high-speed multiplex measurements, at
the cost of adding space for filters and detector arrays.

For filter array type, the filter array and detector array are generally
bijective, each filter element is responsible for selecting and transmitting a
specific wavelength to its paired detector. The number of detection channels
directly constrains the resolution or spectral range of the spectrometer.
Various technologies for filter arrays have been developed, such as Fabry-
Pérot etalons [8], thin films [12], planar photonic crystals [13], photonic
bandgap fibers [9], metasurfaces [14], and waveguide ring resonators [15]
[1].

The linear variable filter is a variant of filter array. Instead of filtering
the wavelengths discretely, a linear variable filter can produce consecutive
spectra along one axis of the filter, which can be realized by a tapered cavity
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(a) (b)

(c)

Figure 1.4: Filter array-based spectrometers. (a) A single-chip integrated
with an array of non-tunable Fabry-Pérot etalons, photodiodes, read-out
circuits and the bus interface. (b) Cross-section of a CMOS Fabry-Pérot
etalon with the photodiode underneath. From Ref. [8]. (c) Schematic of
a photonic bandgap fiber bundle spectrometer. From Ref. [9].
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[16] or tapered waveguide [17].

1.2.3 Fourier transform type

Fourier transform type spectrometers use interferometers to modulate the
incident light, collect time-variant light intensities, and calculate spectra via
Fourier transform. The early Fourier transform type spectrometers are based
around Michelson interferometers. The incident light is divided by a beam
splitter into two arms, one towards a fixed mirror and the other towards
a movable mirror. Both light beams are reflected back toward the beam
splitter and the recombined beam is directed to the detector. Because of the
phase difference induced by optical path length difference ∆ between the two
arms, a interference pattern is generated and its time-variant intensities are
measured by the detector. By making measurements of the signal at many
discrete positions of the moving mirror, an interferogram as a function of
optical path length difference ∆ is generated, an a Fourier transform can
convert the interferogram into a spectrum of incident light. Since Fourier
transform spectrometers avoid spatial dispersion of light and monitor all
wavelengths simultaneously on the detector, the signal-to-noise ratio (SNR)
receives an increase, offering an inherent advantage over dispersion optics
spectrometer.

The Michelson interferometer can be miniaturized by applying MEMS
to manipulate the movable mirror [18]. A drawback of the Michelson
interferometer for miniaturization is that the spectral resolution is limited
by the maximum path length difference allowed by the actuator travel
range. In recent years, the mainstream of planar on-chip Fourier transform
spectrometer is based on waveguides and interferometers without movable
mirrors. The typical structure is Mach-Zehnder interferometer (MZI), in
which light is split into two waveguide pathways and recombined before
reaching a single detector. The optical path length difference between
the pathways can be modulated via several methods, for example, the
electro-optic modulation of LiNbQ3 waveguides [22][19], or integrating
microheaters adjacent to optical pathways to exploit thermo-optical effects,
which has been demonstrated on silicon-on-insulator (SOI) waveguides
[20][23].

Another approach of miniaturized interferometer-based spectrometer is
the stationary wave integrated Fourier transform spectrometer (SWIFTS),
which uses a dual temporal and spatial sampling scheme. In SWIFTS,
a standing wave is set up through two counter-propagating light in a
waveguide. By depositing metallic nano-probes on top of the waveguide
to sample the evanescent fields, temporal and spatial interferograms can
be measured at the same time. Furthermore, by applying a voltage to
induce electro-optic effects, the spatial interferogram can be shifted along the
waveguide, solving the undersampling problem of limited detector numbers
[21].

In general, on-chip Fourier transform type spectrometers require
some active control on the interferometers to sample temporal or spatial
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(a) (b)

(c) (d)

Figure 1.5: Fourier transform type microspectrometers. (a) Schematic
of a miniaturized Michelson interferometer-based Fourier transform
spectrometer with a MEMS electrostatic actuator. From Ref. [18]. (b)
Schematic of a MZI-based Fourier transform spectrometer using a LiNbO3
waveguide with electro-optic modulation. From Ref. [19]. (c) Schematic of
a MZI-based Fourier transform spectrometer using thermal-optical effects
to modulate optical path difference. From Ref. [20]. (d) Schematic of
a stationary wave integrated Fourier transform spectrometry (SWIFTS)
system using the electro-optic effect in LiNbO3 to shift the interferogram
along the waveguide over time through a bias voltage. From Ref. [21].
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Figure 1.6: An on-chip-size spectrometer based on multiple scattering in a
random disordered photonic crystal region. From Ref. [24]. (a) SEM image
of the fabricated spectrometer. The dispersive element is a semicircular
region of randomly positioned air holes. The probe signal is coupled into
the random medium via a defect waveguide at the bottom of the semicircle,
then diffuses through the random medium via multiple scattering and
eventually reaches the 25 defect waveguides around the circumference of
the semicircle. These tapered waveguides will couple the signals to the
detection channels. (b) Numerical simulation of light path of TE polarized
light at λ = 1,500 nm. (c) Experimental near-infrared optical image of the
random spectrometer with a probe signal at λ = 1,500 nm.

interferograms. It has some advantages like high SNR. The spectral range
and resolution of such spectrometer are determined by sampling size and
rate, which usually rely on the performance of actuators in interferometers.
Aside the challenges from the miniaturization of interferometers, the
computation effort of Fourier transform may affect its time response when
comparing with other types of spectrometers.

1.2.4 Reconstructive type

In a conventional grating-based or filter-base spectrometer, each
wavelength in the spectrum is mapped to an individual detector, so the
spectral resolution is directly decided by the number of detection channels.
As the footprint of device scales down, this one-to-one mapping constrains
the spectral resolution due to fabrication techniques, including the density
of detectors in a limited space and the fabrication errors of detector array.

To overcome the limitations of such one-to-one mapping, an alternative
approach is to realize complex spectral-to-spatial mapping by random
disordered structures. The working principle of random spectrometers
is that the characteristic pattern formed by transmitted light through a
disordered system provides a sort of fingerprint, uniquely identifying the
wavelength of transmitted light. The characteristic patterns are usually
one- or two dimensional spatial intensity distributions and can be used to
reconstruct the input spectrum. For example, in the work presented by
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Redding et al.[24], as shown in Figure 1.6, a semicircle region of random
photonic crystal scatter is designed to let each input wavelength goes
through unique propagation paths and reach specific detection channels,
where the combination of intensities measured by detection channels can be
used as characteristic patterns to reconstruct the input spectrum. In their
another work, an evanescently coupled multimode spiral waveguide can
form wavelength-dependent speckle pattern from the interference between
the modes in the waveguide, and evanescent coupling between neighboring
arms of the spiral results in a non-resonant broadband enhancement of the
spectral resolution [25].

The reconstruction of input spectrum is essentially the solution of a linear
equation problem, which can be expressed as

I = T·S (1.2)

where I is the measured intensity vector, S is the input spectrum vector,
and T is the transfer matrix which contains the complex spectral-to-spatial
mapping information. In practical, the measured intensity is the linear
overlay of scaled characteristic patterns of all wavelengths, and the target
spectrum can be understand as the assembly of scaling weights of their
intensity patterns.

After the fabrication of a reconstructive spectrometer, there is always a
calibration step necessary to correctly obtain the transfer matrix T. This can
be achieved by using monochromatic probe lights to scan over the spectral
range to get the characteristic intensity pattern for each wavelength, which
refers to a specific column in the transfer matrix T. The reconstructive
spectrometers are highly robust with respect to fabrication errors, which are
compensated for through calibration. However, the operating temperature
usually requires precise control to ensure the transfer matrix works.

If the characteristic patterns of two distinct wavelengths are identical, it is
impossible to tell the input spectrum S from the measured intensity I. On the
contrary, the higher the dissimilarity between the characteristic patterns, the
higher resolving power the spectrometer has, which mathematically refers a
transfer matrix T with diverse columns. In practical, the inversion problem is
typically ill-posed, which can be overdetermined or underdetermined if the
number of detectors is higher or lower than the number of data points in the
reconstructed spectrum, respectively. In the overdetermined case, truncation
of the measured data that is easily affected by the noise can effectively
suppress reconstruction errors. In the underdetermined case, additional
information such as smoothness can be adopted to approximate the best
possible solutions. Techniques like compressive sensing [26] and machine-
learning [27] are also promising methods to improve the spectral resolutions.

1.3 Objective of this study

As described in the earlier section, reconstructive type spectrometer has
great attractions over other categories of miniaturized spectrometer, such
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as the enhancement of resolution on limited device footprint by complex
spectral-to-spatial mapping, high robustness to fabrication imperfections
through calibration, and the potential of further improved performance
by optimizing reconstruction algorithms. The cost-performance ratio of
reconstructive type spectrometer will definitely benefit from the increases
in computational power, reductions in processor price and size, and the
development of computational software. Therefore, reconstructive type
spectrometer is a promising direction to achieve high resolution, wide
spectral range, and ultra-compact physical footprint.

In this study, we are interested in using the simple photonic crystal slab
waveguide as the structure of a reconstructive type spectrometer, by using
the inherent fabrication imperfections induced Anderson localization as the
characteristic pattern for reconstruction. The feasibility of this idea has
been demonstrated and the performance of a prototype has been measured
experimentally by Kodama et al. from Tanabe Lab [28]. The details of the
random photonic crystal waveguides-based reconstructive spectrometer will
be explained in Chapter 2. The objective of this thesis is a quantitative
numerical investigation of geometry parameters for this spectrometer, by
controlling variables and comparing its performances at varying parameters.
The numerical simulation method and setups will be described in Chapter
3. Then the simulation results and analyses will be shown in Chapter 4.
Finally, in Chapter 5, the study will be summarized and the outlook of this
spectrometer design will be discussed.
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Chapter 2

Theory of Random Photonic
Crystal Waveguide-Base
Reconstructive Spectrometer

2.1 Photonic crystal waveguide

The photonic crystal is an optical nanostructure which has periodicity in
its refractive index. Depending on the periodicity, the photonic crystal can be
1-dimensional, 2-dimensional, or 3-dimensional. Simple examples that show
the concept of photonic crystal waveguide is shown in Figure 2.1. In this
work, we focus on 2-dimensional photonic crystal structures which are easy
to fabricate.

Photonic crystals receive great interest because of their potential to
manipulate the propagation of light. The optical band structure of a photonic
crystal can be artificially designed by adjusting its materials and periodicity.

An important feature of photonic crystals’ band structure is the band gap,
as shown in Figure 2.2 in which the propagation of light is forbidden in one
or multiple directions.

A photonic crystal (PhC) waveguide is created by introducing a line
defect to the 2-dimensional photonic crystal by removing a row of airholes,
the periodicity of the photonic crystal is partially broken, which creates
propagating modes inside the photonic crystal band gap. These modes can
only propagate along the line defect because of the constraint of the photonic

Figure 2.1: Simple examples that show periodic structures of one-, two-
, and three dimensional photonic crystals. The different colors represents
materials with different dielectric constants. From Ref. [29].
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(a) (b)

Figure 2.2: (a) A two-dimensional photonic crystal with triangular lattice
air columns in a dielectric substrate. (b) An example of band structure of a
two-dimensional triangular lattice photonic crystal, which consists of a TE
photonic band gap. From Ref. [29].

crystal band gap in other in-plane directions and total internal reflection in
out-of-plane directions, which makes the photonic crystal slab with a line
defect behave like a waveguide.

Compared with general slab waveguides which utilize total internal
reflection at the boundaries of core and coating medium, photonic crystal
waveguides have better compatibility with sharp bends because the
constraint of photonic crystal band gap can suppress losses at bends. In
addition, the band structure of photonic crystal waveguide can be modified
by changing parameters like lattice constant, lattice shape, refractive index,
and line defect width, providing great flexibility for designing waveguides
with expected behaviours. Besides, the dispersive curve of the guided
mode allows slow-light regime at near-cut-off wavelengths [30], which has
applications such as enhancing light-matter interaction.

2.2 Fabrication errors and Anderson localization
in PhC waveguide

In previous section, we mentioned that photonic crystal is a nanostructure
whose refractive index periodically changes in one or multiple directions.
This periodicity generates many interesting features of photonic crystal
structures. However, in practical situations, there is no perfect photonic
crystal, no matter it is natural or artificial structure, there are always more or
less statistical errors in the form of variations relative to the ideal structure.
Although it is known that photonic crystal is robust to small imperfections,
it may become a sensitive problem for the precise nanostructure applications
like slow-light transport or single-photon sources. Therefore, the effects of
these unavoidable random disorders deserve some thorough investigations,
and people even found some approaches to induce new functionalities by
random disorders. In this section, we focus on disorder induced Anderson
localization in photonic crystal (PhC) waveguides.
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Figure 2.3: (a) Sketch of the W1 line-defect photonic crystal waveguide.
a is the lattice constant, b is an integer that defines the number of air
holes. (b) Sketch of the disorders for the radius and position of air holes.
The dashed and full circles indicate holes of the regular and disordered
structure respectively. (c) Band structure of the air-bridge W1 photonic
crystal waveguide with slab thickness d = 0.5a, dielectric constant ϵ = 12,
air hole radius r = 0.3a, and b = 10. Band 1 (red) is the spatially even
guided TE mode. Band 2 is the odd guided TE mode. Band 3 and 4 are
modes at the boundaries of photonic crystal band gap. From Ref. [31].

Figure 2.4: Finite-difference time-domain calculation of the electromagnetic-
field intensity in an ideal (a) and in a disordered (b) W1 photonic crystal
waveguide with a lattice constant a = 260nm and a hole radius 0.29a,
calculated at the cutoff frequency of waveguide mode. The disordered
waveguide is perturbed by σ = 0.04a. (c) Experimentally recorded high-
power photoluminescence spectra collected while scanning a microscope
objective along a photonic crystal waveguide with only intrinsic disorder
(σ = 0). From Ref. [32].
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(a) (b)

Figure 2.5: Theories of Anderson localization in disordered photonic crystal
waveguide. (a) Schematic of disorder induced fluctuations of the band edge
(ωedge), which create cavities where photons of certain frequencies (ω0) are
confined. From Ref. [33]. (b) Schematic of multiple scattering induced
localization in a photonic crystal waveguide with 6% engineered disorder.
The red circles represent the hole positions in an ideal structure without
disorder. The orange arrows depict the wavevectors of localized modes.
From Ref. [34].

The most investigated disorders in PhC waveguides are the variations
of air hole’s radius and the displacements of air hole’s position, as shown
in Figure 2.3(b). The roughness of slab surface and the deformations of
air hole’s shape are also common sources of disorder in photonic crystal
waveguides. These are all ubiquitous imperfections that happen in practical
fabrications, even for state-of-the-art technologies.

A large amount of researches on disordered photonic crystal waveguides
focus on the W1 line-defect triangular lattice waveguide, since its band
structure is typical and well-known. Figure 2.3(a) shows the physical
structure of a W1 photonic crystal waveguide and Figure 2.3(c) shows its
band structure. Band 1, the spatially even guided TE mode, is the main
propagating mode in a W1 photonic crystal waveguide. Its highly dispersive
curve leads to low group velocities near the lower edge of the band, and
should reach zero-velocity in an ideal situation. However, in practical
situations, this slow light regime is always disturbed by fabrication error
induced disorders and cannot reach its theoretical limit.

In an ideal photonic crystal waveguide, the spatial profile of
electromagnetic field in slow light regime should be periodic along the
line-defect direction, obeying the Bloch wave behavior. Nevertheless, in a
disordered photonic crystal waveguide, there will be random localization
occurred along the waveguide, disturbing slow light transport, as shown
in Figure 2.4. This phenomenon is called Anderson localization in photonic
crystal waveguide.

The origin of Anderson localization is an interplay of order and disorder.
There are two theories that are used to explain the cause of Anderson
localization.

The first theory is illustrated in Figure 2.5(a). Disorders like the irregular
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shapes of air holes will break the periodicity of photonic crystals and induce
fluctuations of the guided mode’s band edge in spatial domain along the
line-defect direction. The fluctuations of the boundary between pass-band
and stop-band create random cavities in the waveguide where photons of
certain frequencies can penetrate through the barriers and resonate inside,
leading to Anderson localization [33]. This explanation is vivid and easy to
understand, but is limited to strong localization that happen at frequencies
near the band edge.

The second and more general explanation is that disorders in photonic
crystal waveguides can induce multiple scattering, which causes localized
modes along the line defect [34], as displayed in Figure 2.5(b). Therefore,
not only near-band-edge frequencies have sharp localization, but also
frequencies well within the propagating regime of the guided band will
show irregular amplitude fluctuations induced by disorder, which helps
enhance the performance of our reconstructive spectrometer as discussed
later.

To further understand Anderson localization, researchers proposed some
parameters to quantify the features of Anderson localization. In this thesis
we are going to look at two important parameters: the Lifshitz tail width and
the localization length.

2.2.1 The Lifshitz tail

The Lifshitz tail in a photonic crystal waveguide is a spectral region
around the band edge (cut-off frequency) where the energy densities from
the waveguide show sharp peaks [36], as shown in Figure 2.6. These peaks
are determined by Anderson localization, and the spectral width of the
region where localized modes appear can be considered as the width of
the Lifshitz tail which quantifies the amount of fabrication disorder in a
photonic crystal waveguide [35]. The insets of Figure 2.6(c) shows the finite-
difference time-domain (FDTD) simulation results of electromagnetic field
intensity ensemble averaged over a total of 10 disordered photonic crystal
waveguids vs wavelength, with σ = 0.02a, σ = 0.04a and σ = 0.06a [35]. The
standard deviation refers to the displacements of air hole position. Due to
the finite number of simulation samples, the sharp resonances are unevenly
distributed and not fully converged, but nonetheless the width of the Lifshitz
tail apparently increases with the amount of disorder.

From the same work, the width of the Lifshitz tail is measured
experimentally for photonic crystal waveguides with different amount
of engineered disorder. The test subjects are 100 µm long photonic crystal
waveguides with lattice constant a = 260 nm, hole radius r = 78 nm, and
slab thickness 150 µm. Multiple quantum dots (QDs) are embedded along
the waveguide to excite the Anderson localized modes. The engineered
disorders σe are displacements of air hole positions in the same way for the
simulations in Figure 2.6. The worth noting observation here is the intrinsic
disorder induced localization. Figure 2.7(a) shows the scanning-electron
image of a photonic crystal waveguide with intrinsic irregular shapes and
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Figure 2.6: (a) Finite-difference time-domain calculation of electric field
component of a W1 photonic crystal waveguide with the standard deviation
of air hole position displacements σ = 0.04a. (b) Dispersion relation of an
even-parity photonic crystal guided mode (dashed-red curve). The shaded
region around the mode cutoff outlines the spectral region where Anderson
localized modes appear determining the Lifshitz tail. (c) Calculated
normalized electromagnetic field intensity ensemble averaged over 20
different positions along a single waveguide and a total of 10 disordered
photonic crystal waveguides with σ = 0.04a. The insets show the shapes of
Lifshitz tail at different amount of disorder. From Ref. [35].

Figure 2.7: (a) Scanning-electron micrograph of a photonic crystal
waveguide without engineered disorder. The inset illustrates that
unavoidable irregular shapes and sizes of the holes are present in the
samples. (b) Normalized high-power photoluminescence spectra collected
while scanning a microscope objective along a photonic-crystal waveguide
with only intrinsic disorder (σe = 0). The bright peaks that appear
randomly along the waveguide and close to the waveguide mode cutoff
correspond to Anderson localized modes. The spectral region where the
modes appear defines the experimental Lifshitz tail. (c) Histogram of the
spectral position of the Anderson-localized modes for different amounts of
engineered disorder σe. The width of the Lifshitz tail increases with the
amount of disorder. From Ref. [35].
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Figure 2.8: Localization length in disordered photonic crystal waveguides.
(a) Steady-state electromagnetic-field intensity (normalized) emitted from
a dipole at ω = 0.266a/λ placed at the center of a disordered photonic
crystal waveguide perturbed by σ = 0.04a. The source frequency is near
the cut-off frequency of the unperturbed waveguide mode. (b) Ensemble
average over 10 different disorder configurations with ω = 0.266a/λ and
σ = 0.04a. (c) Ensemble-averaged electromagnetic-field intensity profile
along the waveguide direction. The localization length can be extracted
from the slope of the exponential decay. From Ref. [37].

sizes of air holes, which are enough to induce clear Anderson localized
modes within a narrow spectral range around the cut-off wavelength
(λ = 978 nm), as shown in Figure 2.7(b). Similar to Figure 2.4(c), the width of
the Lifshitz tail can be extracted from these high-power photoluminescence
spectra along the waveguide, by counting the number of Anderson localized
modes at each wavelength. The histogram of the Anderson localized modes
spectral positions for different amount of engineered disorder are displayed
in Figure 2.7(c). It demonstrates that the Lifshitz tail broadens spectrally
when increasing the amount of disorder, matched to simulation results. In
addition, even the photonic crystal waveguide with only intrinsic disorder
(σe = 0) shows considerable counts of Anderson localized modes and a
relatively wide Lifshitz tail, indicating the potential applications of intrinsic
disorders.

2.2.2 The localization length

The localization length is another statistical parameter for Anderson
localization. Although the Anderson localized modes are considered as
random events that their positions in the photonic crystal waveguide
are unpredictable, after ensemble averaging over many configurations of
disorder, the intensity pattern envelope shows an exponential damping from
the position of the source [37], as shown in Figure 2.8, in which a dipole
source is placed at the center of a disordered photonic crystal waveguide.
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Figure 2.9: Two mechanisms of disorder induced localization. (a)
Localization length calculated in a photonic-crystal waveguide with air hole
radius 0.29a perturbed by σ = 0.01a (black dots). The dashed line pinpoints
the cut-off frequency of the propagating Bloch mode in the ideal structure.
In the band region of a propagating waveguide mode, the localization
length ξ is proportional to DOS−2, represented by the red line, while in
the band gap region ξ is proportional to m−2, represented by the blue line,
where DOS is the density of states and m is the effective photon mass in
photonic crystal. (b) The black line plots the corresponding DOS of a perfect
photonic crystal waveguide. (c) The localization length ξ vs disorder σ at
ω = 0.266a/λ (inside band). (d) The localization length ξ vs disorder σ at
ω = 0.261a/λ (inside band gap). From Ref. [37].

The localization length is a parameter that describes the decay rate, and can
be expressed as

< ln(I) >= −x/ξ (2.1)

where "<>" means ensemble average, I is the energy intensity dependent on
the position, x is the distance from the source, and ξ is the localization length,
as shown in Figure 2.8(c).

The localization length is a very important parameter that indicates the
possibility of the occurrence of Anderson localization. If the length of the
photonic crystal waveguide is much longer than the localization length of a
wavelength, then Anderson localized modes are highly possible to happen
at this wavelength. On the contrary, if the length of the waveguide is much
shorter than the localization length, Anderson localization at this wavelength
will be suppressed. Therefore, for nanostructures that intend to avoid
Anderson localization, one strategy is to build structures with dimensions
much smaller than the localization lengths.

What we are interested here is how the localization length varies with the
wavelength and amount of disorder. García et al. has presented a detailed
numerical analysis of two mechanisms that determines the localization
length in a disordered photonic crystal waveguide [37]. Figure 2.9(a) plots
the dispersion of localization length ξ calculated from FDTD simulations.
The simulation subject is a triangular lattice W1 photonic crystal waveguide
with a lattice constant a = 260 nm and an air hole radius r = 0.29a.
An effective refractive index of n = 2.76 is used to represent the 150-nm-
thick photonic crystal slab in two-dimensinal simulations. Disorders are
introduced by displacing the positions of air holes with a standard deviation



2.2. Fabrication errors and Anderson localization in PhC waveguide 19

σ = 0.01a. Two analytical models describing the scaling of ξ vs ω are
plotted as red line and blue line, while the calculated results are displayed
by black dots and the cut-off frequency is plotted as dashed line. In the
propagating regime (red-shaded area), ξ is proportional to DOS−2, where
DOS = (1/π)∂k/∂ω is the density of states of the propagating mode
[38], while in the evanescent regime (blue-shaded area) ξ is proportional to
[m(ω0

2 − ω2)]−2, where m = (∂2ω/∂k2)−1 is the effective photon mass in the
photonic crystal, which is obtained as the inverse of the band curvature of
the unperturbed mode, ω0 and ω are the cut-off frequency if the unperturbed
and perturbed structure respectively. Furthermore, a crossover region (gray-
shaded area) connects the two regimes. As mentioned earlier in Section
2.2, in the propagating regime Anderson localization is mainly caused by
multiple scattering, while in the crossover regime and evanescent regime
around the ideal cut-off frequency the fluctuations of band edge creates
random barriers that confine light. The two mechanisms in Figure 2.9(a)
help us have better understanding on Anderson localization, and reveal the
tendency that localization length decreases with input frequency.

García et al. has further investigated the relationship between the
localization length and amount of disorder [37]. The simulations are carried
out at two different frequencies, one in the propagating regime ω =
0.266a/λ, plotted in Figure 2.9(c), and the other one in the evanescent regime
ω = 0.261a/λ, plotted in Figure 2.9(d). The dependence of localization
length with disorder is opposite at these two frequencies: it decreases in the
propagating region while it increases in the evanescent region. The former
can be explained as the increase of the effective scattering area (Figure 2.9(c)
inset, shaded area) enlarges the density of scatters ρ, while ξ ∝1/ρΣ where
Σ is the scattering cross section proportional to DOS2. The latter can be
considered as the additional disorders increase the curvature of band edge
and the effective photon mass m is reduced.

2.2.3 Summary of Anderson localization

The unavoidable fabrication errors in photonic crystal waveguide can
induce Anderson localization, either by multiple scattering or random
cavities caused by band edge fluctuations. The spectral range of Anderson
localization is measured by the Lifshitz tail width, which increases with the
amount of disorder. The spatial position range of Anderson localization
is quantified by the localization length, which decreases as the input light
moves to longer wavelengths. When the amount of disorder becomes larger,
the localization length dramatically decrease in the propagating region while
it slightly increases in the evanescent region.

The numerical simulation work by Savona presents a good overview of
how disorder affects the band structure of a W1 photonic crystal waveguide
[31]. The simulations use an air-bridge photonic crystal waveguide with
configuration d = 0.5a, r = 0.3a, b = 10, and effective slab dielectric
constant ϵ̄2 = 8.77 for two-dimensional simulation. Note that the actual
physical dimension of the structure is unnecessary for simulation parameters
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Figure 2.10: Spectral density of the disordered W1 photonic crystal
waveguide, visualizing the spectral contribution of localized modes. (a)
Overall view of spectral density around Band 1 and 2 mentioned in Figure
2.3, plotted on a log10 color scale for σ = 0.002a. The dotted line is the
boundary of the light cone. (b)-(e) Detailed view of the spectral density at
the lower edge of Band 1 for σ = 0.001a, σ = 0.002a, σ = 0.004a, σ = 0.008a,
respectively. From Ref. [31].

Figure 2.11: (a)-(c) Electric field spatial profile of three selected eigenmodes
computed for σ = 0.002a, at frequencies ωa/2πc = 0.27267, 0.27283, and
0.27518, respectively [indicated by horizontal dotted lines in Figure 2.10(c)].
The main panels display the field intensity computed at the center of each
elementary cell, while insets show the full field profile for selected portions
of the W1 waveguide. From Ref. [31].
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as people are used to express variables in a ratio way, like frequency ω is
specified in units of 2πc/a, while wave vector k is specified in units of 2π/a.
The merit of using dimensionless units is that the band structure of different
nanostructures can be easily compared. If the actual physical scale is needed,
it can be acquired by just bringing the value of lattice constant a.

The disorders are introduced by a Gaussian fluctuation of both air hole
radii rm and positions (xm, ym), where m traverses all holes of the photonic
crystal waveguide. The standard deviation is set as σr = σx = σy = σ, which
ranges from 0.001a to 0.008a, corresponding to state-of-the-art fabrications.
Figure 2.10(b)-(e) shows the calculated spectral density around the guided
band, for σ = 0.001a, 0.002a, 0.004a, and 0.008a, respectively. It can be
clearly observed that the width of the Lifshitz tail increases with the disorder
level, and these Anderson localized modes extend along k direction as σ is
increased.

The electric field profiles of three selected modes (indicated by three
dotted lines in Figure 2.10(c)) of a realization with σ = 0.002a are plotted
in Figure 2.11(a)-(c) respectively. The main plot in each panel represents the
value of the field intensity at the center of the waveguide over the full length
of the simulated structure, while the insets show the close look of electric
field profile for selected representative regions in the waveguide. Figure
2.11(a) shows the mode lying below the band edge and is localized over a
tight distance. Figure 2.11(b) shows the mode slightly above the band edge,
with a less localized three-lobe profile over a larger distance. Such mode
with several lobes and an overall envelope with exponentially decaying
tails is a typical character for Anderson localized states. As mentioned
in Section 2.2.2, the localization length increases with frequency, meaning
the localization length is in an ascending order for (a)-(c). Figure 2.11(c)
shows the mode well within the propagating regime and is delocalized over
the whole length of the simulated waveguide while still showing irregular
amplitude fluctuations induced by disorder. This is due to the localization
length at this frequency is much longer than the simulation length.

As shown in Figure 2.11, the disordered photonic crystal waveguide has
different localization profiles for different wavelengths, even wavelength in
propagating region shows signature profile induced by disorder. We believe
these unique localization profiles can be utilized as characteristic patterns
of a reconstructive spectrometer, and proposed a chirped photonic crystal
waveguide structure, which will be introduced in next section.

2.3 Chirped structure and reconstruction algorithm

When the waveguide width of a photonic crystal waveguide is slightly
decreased, the band edge of TE propagating even mode inside the photonic
crystal band gap will slightly shift towards the shorter wavelength side, as
shown in Figure 2.12(b).

The photonic crystal waveguide based reconstructive spectrometer
introduced in this work consists of a chirped photonic crystal waveguide,
as shown in in Figure 2.12(a). Triangular lattice photonic crystal waveguide
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Figure 2.12: (a) Schematic of the chirped PhC waveguide structure. A
camera monitors the energy intensity profiles from the top of the slab. (b)
Band structure of the guided mode for different PhC waveguide widths.
The band edge shifts to larger frequencies when the PhC waveguide width
increases. [(a)-(b) are from Ref [39]] (c) Schematic of Anderson localization
in a chirped waveguide. The colored area represents the stop-band, and the
white area represents the pass-band.

sections with gently decreasing waveguide widths are connected in a straight
line [28].

If the chirped photonic crystal waveguide is perfect with zero fabrication
error, then its band structure will remain consistent inside each section. The
band edges in the spatial domain will be flat lines connected in a stairs
shape. There will be some strong backscatterings for wavelengths that are
forbidden to propagate in the next section at the junctions of neighboring
sections, which can be used to group input wavelengths that are exclusive to
this PhC waveguide section. However, the further distinction of wavelengths
is difficult due to their highly linear correlated energy density profiles.

In practical fabrications, there are always fabrication errors happening
to the photonic crystal structures. The center positions and shapes of the
air holes may experience some unpredictable disturbances. The periodicity
of the photonic crystal waveguide is broken, and the band edges in the
spatial domain will fluctuate along the direction of light propagation. Some
random optical cavities are generated and cause Anderson localization inside
the line defect of the PhC waveguide, as shown in Figure 2.12(c). Because
of fabrication errors, the scattered light that escapes from the total internal
reflection condition increases, especially at the optical cavities. By collecting
the scattered light using an infrared camera and macro lens, we can obtain
near-field images that contain the localization profiles of input wavelengths.
The wavelength-sensitive localized modes add great information to the
energy intensity profiles that help reconstruct the input spectrum.
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Figure 2.13: The geometry parameter variables covered in this work: the
length of each section L, the reduction rate of waveguide width Wi+1 − Wi,
and the disorder level of air holes ∆pos, ∆rad.

Here introduce the details about the reconstruction algorithm of this
spectrometer design.

After the fabrication of each chirped photonic crystal waveguide
spectrometer chip, the first step is calibration. Inject a single-wavelength
laser into the PhC waveguide and take near-filed images of its localization
pattern from the top of chip by camera when the system reaches its steady
state. Multiple images are taken and averaged to suppress white noise and
the brightness information of pixels around the line defect is recorded as a 2-
dimensional array, which is further summed in the transverse direction of the

waveguide to a 1-dimensional column array, such as I⃗λq =

{
i(

λq)
p

}
, where p

refers to the longitudinal spatial position. This 1-dimensional column array
contains the calibration data of the corresponding single-wavelength input
λq. Change the input wavelength and repeat the procedure. The scan range
of wavelengths should cover the working wavelengths of the spectrometer,
and the scan step size should be set small enough as it determines the
theoretical resolution limit of the reconstruction algorithm. When the single-
wavelength scanning is completed, we place the 1-dimensional columns in
ascending wavelength order to get a 2-dimensional transfer matrix T that
represents the spectral-to-spatial mapping of the device.

T =
[

I⃗λ1 I⃗λ2 · · · I⃗λ3

]
=

{
ip,λq

}
(2.2)

We use this matrix T as calibration data. For a single wavelength input
λ, the relationship between the input spectrum S⃗ and the measured spatial
energy density profile I⃗λ can be expressed as

S⃗ = T−1 I⃗λ (2.3)

This relationship is valid even for multi-wavelength input because the
spatial energy density profiles for different wavelengths can be linearly
combined, as we will discuss later. Solving this linear equation is the core
of the reconstruction algorithm.

In practical implementations, the linear equation is always disturbed by
measurement inaccuracies and experimental noise. We define a cost given as
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C(S⃗) = ∥ I⃗λ − TS⃗∥2 + ∥S⃗∥1 (2.4)

The best possible solution S⃗ is found by minimizing the cost C(S⃗). We
apply the fast iterative shrinkage-thresholding algorithm (FISTA) [40] to find
the solution.

A published work from our group presented a prototype design of such
a PhC waveguide structure, with a test chip fabricated. A wavelength range
from 1596.6 to 1604.4 nm with 0.2-nm resolution is recorded [28].

In this work, the relationship between geometry parameters of the
chirped PhC waveguide and performance as a spectrometer is further
investigated. As shown in Figure 2.13, we focus on three topics: the length of
each section, the reduction rate of waveguide width, and the disorder level
of air holes.
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Simulation Method and Setups

3.1 FDTD method

As we mentioned in the previous chapter, the photonic crystal waveguide
structure that we are interested in features randomly distributed disorders.
Due to the existence of disorders for both the radius and center location of the
airholes, the whole structure becomes asymmetric and aperiodic. Simulation
methods like Beam Propagation Method (BPM) and Finite Element Method
(FEM) are not effective for such structures. So we decided to use a Finite-
Difference Time-Domain (FDTD) method to calculate the steady-state

3.2 MEEP simulation setups

The simulation tool we used is MEEP [41], an open-source software
package for electromagnetics simulation via the Finite-Difference Time-
Domain (FDTD) method.

A Python script "phcwg01.py" is created to define default simulation
parameters and Python functions that are used for MEEP simulations. A
control script "phcwg_master.py" that imports "phcwg01.py" is edited every
time to twist simulation parameters and run MEEP simulations.

In "phcwg01.py", a class "PhC" is defined as a container to store all
constant objects, as all physical parameters that determine the simulated
PhC waveguide structure and other constant parameters are defined as
data attributes of an instance object of the class "PhC". The following are
definitions of some essential attributes for the simulation setup.

PhC.n: the material refractive index for photonic crystal waveguide. The
default value is 2.788, calculated as the effective refractive index [42] of a
silicon slab with 0.2 µm thickness sandwiched between silica coatings and
photonic crystal holes filled by silica.

PhC.nb: the background refractive index, which refers to the refractive
index of air holes of the photonic crystal. The default background material is
silica with a refractive index of 1.444.

PhC.a: the lattice constant a of the photonic crystal. The default value is
0.42 µm.

PhC.r: the air hole radius of the photonic crystal. The default value is 0.12
µm.
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PhC.periods: the total length of the PhC waveguide in units of the lattice
constant a (the period of photonic crystal). This is one of the main variables
that get twisted in this work since we are interested in the optimal length of
a single section in the chirped PhC waveguide structure.

PhC.w_wg: the waveguide width of the PhC waveguide, defined as the
distance between photonic crystal air hole rows on the two sides of the line
defect. If it is a multiple-section structure, then PhC.w_wg is the waveguide
width of the first section. The default value refers to a W1 PhC waveguide,
which is created by simply removing a single row of air holes in the
triangular lattice without any shift to the remaining air holes’ locations.

PhC.section: the number of sections in the chirped PhC waveguide
structure. The sections are evenly separated along the PhC waveguide, with
each section taking a length of PhC.periods/PhC.section.

PhC.shrink_rate: the reduction rate of the chirped PhC waveguide’s
width, in units of percentage. The waveguide width of each chirped PhC
waveguide section will decrease by PhC.shrink_rate∗PhC.w_wg from the
previous section. For example, if PhC.shrink_rate = 0.01, while PhC.w_wg

is the default value, the first section will be a W1 PhC waveguide, the second
section will be a W0.99 PhC waveguide, the third section will be a W0.98 PhC
waveguide, and so on.

PhC.Sigma_d: the standard deviation σd of the air hole displacement,
which is assumed to be a normal distribution with an expectation of zero.
The default value is 0.002 µm. This is in the same order as the practical
fabrication error on the prototype chip.

PhC.Sigma_r: the standard deviation σr of the air hole radius error, which
is assumed to be a normal distribution with an expectation of zero. The
default value is 0.002 µm.

PhC.dpml: the depth of the PML layer surrounding the simulation cell.
The default value is 2 times the lattice constant.

Considering the scale of our device, especially the length of the PhC
waveguide, we chose a 2-dimensional FDTD method to simulate the
localization patterns of the structure rather than a full 3-dimensional FDTD
calculation, since the simulation of a full-length chirped PhC waveguide
spectrometer is inefficient and impractical. The computing resources we
have can support a maximum PhC waveguide length of 240 periods within
the tolerance of computation time. To balance the simulation time and
precision, a grid size of 0.028 µm is used for 2D FDTD simulation. Thanks
to MEEP’s support for subpixel smoothing, the effect of nanometer-scale
disorders can still be revealed in simulations to a certain extent.

To suppress the cost of simulation time, the width of the simulation
domain is limited to only include 5 rows of photonic crystal holes on both
sides of the line defect.

To obtain the localization patterns of the device at different input
wavelengths, we use a short-duration broad-bandwidth pulse to excite the
device and compute the Fourier transform of the fields as the steady-state
field responses.
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Figure 3.1: Setup for 2D-FDTD simulation. Red dot: Guassian point source.
Blue shaded area: spatial energy density monitor. Blue line: power flux
monitor. Green shaded area: perfectly matched layer (PML).

Figure 3.2: Band structure calculated for the ideal W1 PhC waveguide with
default parameters. The TE guided even mode is shown in red curve and its
band edge frequency is 0.252(2πc/a), which is equivalent to a wavelength
of 1.667 µm.

A Gaussian point source is placed inside the input rectangular
waveguide, which is equivalently a slab waveguide in 2-dimensional FDTD
simulation. Power flux monitors are placed on both the input and output
sides of the PhC waveguide to measure its propagation loss.

Considering the band-edge wavelength of a W1 PhC waveguide is at
about 1.667 µm, and the shift of band-edge towards shorter wavelengths
due to the reduction of waveguide width in chirped structure, the recording
wavelength range is decided to be from 1.55 µm to 1.7 µm, at a step size
of 0.001 µm. The choice of step size is a compromise to time-consuming
but should be small enough to reveal the wavelength sensitivity of the
spectrometer.

The monitoring area of energy density is shown as the shaded area, which
includes about 3 rows of photonic crystal air holes on both sides of the line
defect. For the near-band-edge wavelengths that we are interested in, most
energy is constrained inside the line defect area, so the monitoring area is
sufficient to record almost every useful information we want.
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The simulation is stopped when the total energy in the simulation domain
is decayed by 0.001 from its maximum recorded value.
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Simulation Results and Analyses

4.1 Performance analysis method

When the 2D FDTD simulation is finished, the 2-dimensional spatial
profiles of the energy intensity for wavelengths are acquired. We use
these 2D FDTD simulation results to approximate the near-filed images of
localization patterns observed in practical experiments mentioned in Section
2.3. An example of localization pattern in a 40a long disordered PhC
waveguide at λ = 1.667 µm is shown in Fig 4.1(b), and its converted 1-
dimensional data is plotted in Fig 4.1(c).

Following the same calibration procedure as practical experiments, the 1-
dimensional data are sorted as columns by the wavelength order to produce
the transfer matrix T, which represents the spectral-to-spatial mapping of
the structure. An example of the spectral-to-spatial mapping of an 80a
long disordered PhC waveguide is plotted in Figure 4.2(a). The small lobes
observed in vertical direction are expected behavior of Bloch wave, with a
periodicity equal to the lattice constant a.

The spectral-to-spatial mapping matrix is a key for performance analysis
as we can calculate wavelength-dependent spectral resolutions from it.

4.1.1 Spectral resolution

The most important numerical value to evaluate the performance of this
device is the spectral resolution. We use the Pearson correlation coefficient
[43] to define the spectral resolution function Θ(∆λ, λq), which represents the
similarity between the energy intensity profile Iλq of the center wavelength λ
and the energy intensity profile Iλq+∆λq of a near-by wavelength λ + ∆λq.

Θ(∆λ, λq) =
cov(Iλq , Iλq+∆λq)

σ(Iλq)σ(Iλq+∆λq)

=
∑m

p=1(ip,λq − Iλq)(ip,λq+∆λ − Iλq+∆λq)√
∑m

p=1(ip,λq − Iλq)
2
√

∑m
p=1(ip,λq+∆λ − Iλq+∆λq)

2

(4.1)

where cov(Iλq , Iλq+∆λq) is the covariance, σ(Iλq) and σ(Iλq+∆λq) are the
standard deviations, Iλq and Iλq+∆λq are the means of Iλq and Iλq+∆λq . As
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Figure 4.1: (a) Hz field slice and (b) energy intensity slice of a 40a long
disordered PhC waveguide at λ = 1.667 µm. (c) Convert the 2-dimensional
energy intensity slice to a 1-dimensional data by summing up the vertical
direction intensities in (b).

mentioned in Section 2.3, Iλq is a 1-dimensional column array Iλq =

{
i(

λq)
p

}
that maps to the spatial position (pixel position) p, so it is a collection of
variables and we can calculate the mean, standard deviation and covariance
with Iλq+∆λq .

The Pearson correlation coefficient measures the linear correlation
between two sets of data. Its value lies in the range from 1 to -1, where
1 represents perfect correlation and -1 represents perfect anti-correlation. In
our case, Θ

(
∆λ, λq

)
has its maximum value 1 when ∆λ = 0, and decreases

with increasing |∆λ|. When |∆λ| is large enough, the linear relationship
between energy intensity profiles of the wavelength λq and λq +∆λ becomes
almost zero, which means their shapes are different enough and can be easily
distinguished, with a positive or negative near-zero Θ

(
∆λ, λq

)
value. Since

our purpose is to design a high-resolution spectrometer, the correlation
coefficient at a small |∆λ| is what we are interested in, which should be close
to 1.

The conventional definition of the resolution of a spectrometer is the
smallest distance |∆λ| between two input wavelength peaks at which they
can still be resolved as separate. To estimate the spectral resolution from
the Pearson correlation coefficients, we set up a criterion value. For a
center wavelength λq, if Θ

(
∆λ, λq

)
is above the criterion value, then the

energy intensity profiles Iλq and Iλq+∆λq are too similar to be accurately
distinguished. If for positive ∆λ, correlation coefficient Θ

(
∆λ, λq

)
is below

the criterion value when |∆λ| > resp, and for negative ∆λ, correlation
coefficient Θ

(
∆λ, λq

)
is below the criterion value when |∆λ| > resn, then

one half of the sum of smallest possible positive resp and smallest possible
positive resn is the spectral resolution for this center wavelength λq. In this
way, we can obtain individual spectral resolution res = (resp + resn)/2 for
each wavelength.
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(a)

(b)

Figure 4.2: (a) The spectral-to-spatial mapping of an 80a long disordered
PhC waveguide. The horizontal axis refers to the wavelength and the
vertical axis refers to the pixel location. (b) The ensemble average of
estimated resolutions for an 80a long W1 PhC waveguide. The horizontal
axis is the wavelength and the vertical axis is resolution in log scale. The
green curve shows the expected operating resolutions that are used to
calculate the effective averaged resolution.
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In this simulation work, we use a conservative criterion value of 0.9
to estimate the resolution at each recorded wavelength. The practical
experiment data from previous works suggests that an even higher criterion
value is possible. However, due to the simulation precision being limited
on grid size, wavelength sampling rate, and PhC waveguide length, the
resolutions in this simulation work are expected to downgrade. The criterion
value of 0.9 is an appropriate choice to quantitatively estimate the spectral
resolution of the spectrometer from simulation results.

4.1.2 Effective bandwidth and effective averaged resolution

The estimated resolutions of an 80a long single section W1 PhC
waveguide are shown in Figure 4.2(b). In this figure, the line “Average”
is the ensemble average of estimated resolutions over 16 individual PhC
waveguide sample realizations, each sample with randomly generated
fabrication errors.

Note that all simulation results in this thesis use 10% truncated means
that discard the lowest 10% and the highest 10% spectral resolution of a
wavelength. So the estimated resolutions of an 80a long disordered PhC
waveguide mentioned above are actually statistical results generated from
20 individual runs. Due to the probability distribution of resolutions and
limited number of simulated samples (10 or 20 runs mostly), by truncating
some outliers we can get a more converged central tendency of data. In rest
of this thesis, we will use total number of simulated samples instead of the
number after truncation.

There are some strong localizations around the band-edge wavelength
1.667 µm observed in Figure 4.2(a), which contribute to the small spectral
resolutions shown as a relatively deep and broad valley in the estimated
resolution curve of Figure 4.2(b). The wavelengths inside this valley are the
designed operating wavelengths of the spectrometer that we are interested
in.

To quantitatively evaluate the operating wavelength range of the
spectrometer, we define the operating wavelength range as a set where
all wavelengths inside are guaranteed to have resolutions better than a
baseline, which is 0.002 µm in this work. The judgement of operating
wavelength range should consider the worst-case resolutions rather than the
ensemble average, so we plot the line "Upper bound" and "Lower bound" in
Figure 4.2(b) to show the fluctuation range of the spectral resolution at each
wavelength. We consider that a wavelength is inside the operating range of
the spectrometer if its "Upper Bound" of estimated resolution is below the
baseline, so that all wavelengths inside the effective band are guaranteed to
have resolutions better than 0.002 µm.

The bandwidth of the operating wavelength range is defined as effective
bandwidth (bandwidth of the purple curve in Figure 4.2(b)), and the mean
of "Average" resolution within the operating wavelength range is defined as
the effective averaged resolution (mean of resolutions of the green curve in
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(a) (b)

(c) (d)

Figure 4.3: (a)-(d) Estimated resolutions for section lengths of 40a, 60a, 90a
and 150a.

Figure 4.2(b)). The effective bandwidth and effective averaged resolution are
two important numerical indicators of the spectrometer’s performance.

Besides the localization patterns around the band-edge wavelength 1.667
µm, some localizations also happened around the 1.59 µm in Figure 4.2(a),
which are odd mode localizations caused by the broken symmetry of
disordered photonic crystal airholes. These odd mode localizations are
relatively narrow-band, so they are not our primary focuses, though in a
long broad-band chirped structure they are expected to provide additional
information that helps improve the resolution of spectrometer when the odd
mode localization bands in preceded sections happen simultaneously with
even mode localization bands in succeeded sections.

4.2 Varying the section length of the PhC
waveguide

In this section, we investigate how the length of a single section in
a chirped photonic crystal (PhC) waveguide affects its performance as a
spectrometer.
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(a) (b)

(c) (d)

Figure 4.4: (a) Operating range and expected resolutions for section lengths
of 40a, 60a, 90a and 150a. (b) Transmittance spectra for section lengths of
40a, 60a, 90a and 150a. (c) Effective bandwidths and effective resolutions for
different section lengths. (d) Propagation losses at the wavelength of 1.637
µm for different section lengths. The propagation loss for the 10a section is
specified as zero.
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Based on the default settings mentioned in Section 3.2, set the number of
sections (PhC.section) as 1, and vary the total length of the PhC waveguide
from 10a to 240a. PhC waveguide structure with random fabrication errors
is generated for each run of the simulation.

Figure 4.3 shows the effective bandwidth and effective averaged
resolution at different section lengths, which are statistical results over
at least 20 runs of simulation for each wavelength. Specifically, 30 runs are
carried out for lengths from 10a to 30a, and 20 runs from 40a to 240a.

The tendencies when increasing the section length are concluded in
Figure 4.4. The simulation results show that in general a longer PhC
waveguide produces a larger effective bandwidth and smaller effective
averaged resolution, which means better performance as a spectrometer.
This is an expected tendency as the probability that Anderson localization
happens is higher in a longer PhC waveguide if the waveguide length is
longer than localization length, as explained in Section 2.2.2. Meanwhile, the
energy intensity profile data grow with increasing PhC waveguide length,
so that more information can be used to reconstruct the input spectrum,
resulting in better resolution.

However, both the effective bandwidth and effective averaged resolution
almost converge when the length exceeds 120a. Further increase of PhC
waveguide length offers minor improvements. When the waveguide length
exceeds 120a, the spectrometer meets some limitations that prevent it from
notably gain.

First, most of the wavelengths in the Lifshitz tail have reached their
localization lengths, as mentioned in Section 2.2. The rest wavelengths’
localization lengths are too long and cannot provide evident enough
characteristic patterns. For wavelengths with localization lengths smaller
than waveguide length, the possibility that Anderson localization happens
outside the localization length is very low, so the additional PhC waveguide
length barely contributes to the resolution of the spectrometer.

Second, because the step size of sampling wavelengths is 1 nm for all
simulations in this work, resolutions smaller than 1 nm are the results of
linear interpolations when calculating the Pearson correlation coefficient,
which means that the effective averaged resolutions may not have enough
precision to show the improvements from the increased PhC waveguide
length.

The benefits of increasing section length don’t last forever. Meanwhile
the propagation loss increases linearly with section length, as shown in
Figure 4.4(d), so there is no point in pursuing a section length longer 120a.
In the following section we will see that break down the a 120a long PhC
waveguide into proper chirped structure can produce better performance.

4.3 Varying the section width reduction rate of the
PhC waveguide
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(a) (b)

(c) (d)

(e)

Figure 4.5: (a)-(d) Estimated resolutions of a 60a-60a structure with
reduction rates of 0%, 1%, 3%, and 10%. (e) Effective bandwidths and
effective resolutions of a 60a-60a structure at different reduction rates.
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(a) (b)

(c) (d)

(e)

Figure 4.6: (a)-(d) Estimated resolutions of a 40a-40a-40a structure with total
reduction rates of 0%, 1%, 3%, and 10%. (e) Effective bandwidths and
effective resolutions of a 40a-40a-40a structure at different total reduction
rates.
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The motivation of designing a chirped PhC waveguide is to broaden the
effective bandwidth. As we show in Section 4.2, the effective bandwidth
for a single-section PhC waveguide converges when it reaches a certain
length. However, with a chirped structure that connects the operating
wavelength range of neighboring sections, as shown in Figure 2.12, the
effective bandwidth can be expanded multiple times.

We first investigate a 2-section structure. A 120a chirped PhC waveguide
is divided by two 60a sections. The reduction rate varies from 0% to 10%. The
definition of reduction rate is explained in Section 3.2. For each reduction
rate, 20 runs are carried out with randomly generated structures every time.
The estimated resolutions for reduction rates of 0%, 1%, 3%, and 10% are
plotted in Figure 4.5(a)-(d) respectively.

When the reduction rate is small like 1%, the light propagates from a W1
waveguide to W0.99 waveguide. Compared with the 0% reduction 120a long
PhC waveguide, the bandwidth is efficiently increased, and the resolution is
also slightly improved.

Continue increasing the reduction rate to 3%, although the effective
bandwidth is further broadened, the resolution gets worse because the
originally continuous valley bottom is separate as two narrower valley
bottoms, which means the overlapped wavelength range of two sections is
reduced.

Further increasing the reduction rate to 10%, the two valley bottoms
get more separated and the hilltop exceeds the baseline, thus the effective
bandwidth drops and the effective resolution gets worse too.

The tendencies of effective bandwidths and effective averaged resolutions
are concluded in Figure 4.5(e). When the reduction rate is smaller than 1%,
it has positive effects on both the bandwidth and the resolution, compared
with the 0% reduction 120a long PhC waveguide. For larger reduction rates,
although the bandwidth is increased, the resolution gets worse than 0%
condition, which is not a preferred behavior.

Sharp declines for effective bandwidth and effective resolution is
observed at reduction rate of 3.5%. This is due to the increased fluctuations
of resolutions at shorter wavelength side of the valley, which results in
larger "Upper bound" and narrower effective bandwidth. The "Average"
itself does not have dramatic change as the "Upper bound", so the maximum
value of expected resolutions inside the effective bandwidth gets lower than
reduction rate = 3% condition, and the effective averaged resolution gets
lower. This kind of decreased effective bandwidth is a common reason for
the decrease of effective averaged resolution when processing data, and will
appear in next section too.

When reduction rate is larger than 7%, the hilltop between the two
separated valleys exceeds the baseline, the function of chirped waveguide
that connects effective bandwidths of two section fails.

Conclude the reduction rate for a 60a − 60a chirped structure, we found
that for reduction rate smaller than 1%, the effective resolution is enhanced
than a non-chirped 120a long waveguide. Reduction rate between 1% and
3% might be useful if the first priority is effective bandwidth. For the high
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(a) (b)

Figure 4.7: (a) Effective averaged resolutions and (b) effective bandwidths of
a 120a-total-length structure at different reduction rates. The combinations
of number and length of sections are 12×10a, 6×20a, 4×30a, 3×40a and
2×60a, respectively.

(a) (b)

Figure 4.8: Effective bandwidths and effective resolutions of a 120a-total-
length structure at different section lengths. The total reduction rates are (a)
0.5% and (b) 1% respectively.

precision spectrometer target, the optimal reduction rate is between 0% and
1%. Although the best resolution is at 0.5%, the reduction rate of 0.75% is
also attractive if consider the gain of bandwidth.

If the total length and expected operating wavelength range of the
chirped PhC waveguide are fixed, there are two strategies when designing
the structure. We can either use a large number of sections with a small
reduction rate, or a small number of sections with a large reduction rate to
build the device.

To find out the optimal combination, we simulate a 40a − 40a − 40a three-
section chirped PhC waveguide structure, with total reduction rate varies
from 0% to 10%. Here the total reduction rate is the multiplication of the
reduction rate of one section and the number of width reduced sections, e.g.,
if it is a W1-W0.99-W0.98 chirped waveguide, then the total reduction rate =
1% × 2 = 2%. The simulation results are shown in Figure 4.6, with 20 runs
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for each reduction rate.
In general, the 40a − 40a − 40a structure has the similar tendency of

effective bandwidth and effective averaged wavelength at different disorder
levels as the 60a − 60a structure, though there is no sharp decline as found
at the 3.5% and 8% reduction rate in the 60a − 60a structure. Pay attention
to Figure 4.6(d), the hilltops do not exceed the baseline even at the total
reduction rate of 10%. The three-section 40a − 40a − 40a structure shows
better robustness to the separation of effective bandwidth than the two-
section 60a − 60a structure.

We continue to increase the number of sections and simulate the 4×30a,
6×20a, and 12×10a structure with total reduction rate varies from 0% to
3%, 10 runs for each reduction rate. The comparison of effective averaged
resolutions and effective bandwidths for different number of sections are
shown in Figure 4.7. In general the performances for the structures different
number of sections are similar at the same total reduction rate. The best
effective resolutions are all obtained at the total reduction rate of 0.5%, and
the effective bandwidths all grow with increased total reduction rates. Figure
4.7 shows that when the total length of chirped waveguide is fixed, the
performance of the spectrometer is mainly defined by the total reduction rate,
while the variation of number of sections can provide some additional biases
to the effective resolution and effective bandwidth. For example, the 4×30a
structure has good resolutions at all total reduction rates, but its bandwidths
are poor at the same time.

Rearrange the effective bandwidths and effective resolutions information
from Figure 4.7, with the addition of data from 10 runs of 120×1a tapered
structure, we conclude the effect of section length (equivalent to the effect of
number of sections when total length is fixed) at total reduction rates of 0.5%
and 1% respectively in Figure 4.8(a) and (b). We can see that for the total
reduction rate of 0.5%, the 12×10a structure has the best effective resolution
and a good effective bandwidth, while for the total refuction rate of 1%,
the 4×30a structure has the best effective resolution and lowest effective
bandwidth at the same time. The optimal combination of section length and
number of sections may vary with the total reduction rate, which requires
further investigation.

The above-mentioned research results are focused on a total length of
120a, and suggests that a total reduction rate of 0.5% is optimal when the high
resolution is the first priority. Simulations of other total lengths indicate that
the optimal total reduction rate of waveguide width may change non-linearly
with the total length, which requires further acquisition and processing of
data.

4.4 Varying the disorder level of the PhC
waveguide

Finally, we roughly investigate how the disorder level will affect the
performance of the chirped PhC waveguide spectrometer. 120a long single
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(a) (b)

(c) (d)

Figure 4.9: Estimated resolutions for a 120a single section structure with
disorder (a) σ = 1 nm, (b) σ = 6 nm. (c) Effective bandwidths and effective
resolutions of a 120a long single section structure for different disorder
levels. (d) Propagation losses of a 120a long single section structure at the
wavelength of 1.637 µm for different disorder levels. The propagation loss
for the 10a section is specified as zero.
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(a) (b)

(c) (d)

Figure 4.10: Estimated resolutions for a 40a single section structure with
disorder (a) σ = 1 nm, (b) σ = 3 nm. (c) Effective bandwidths and effective
resolutions of a 40a long single section structure for different disorder
levels. (d) Propagation losses of a 40a long single section structure at the
wavelength of 1.637 µm for different disorder levels. The propagation loss
for the 10a section is specified as zero.
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section waveguides with different amount of disorder are simulated, 10 runs
for each disorder level respectively. The disorder is set as σ = σr = σd,
ranging from 1 nm (∼0.002a) to 6 nm (∼0.014a). The calculated effective
bandwidths and effective averaged resolutions are plotted in Figure 4.9(c)
and the variation of propagation loss is plotted in Figure 4.9(d). Although
the results do not converge well due to the limited number of realizations,
we can still find out that in general as the amount of disorder increases,
the effective bandwidth becomes smaller, the effective averaged resolution
becomes larger, and the propagation loss also increases. It seems like for
a 120a long waveguide, all aspects of its performance as a spectrometer
get worse when the amount of disorder increases. Although the effective
resolution of σ = 2 nm is slightly better than σ = 1 nm, this could be the effect
of reduced effective bandwidth or statistical error due to limited number of
samples.

The higher propagation loss is expected as the increase or disorder lead to
more back-scattering and more in-plane loss through photonic crystal rows
because of the broken Bragg reflection. The deteriorated effective bandwidth
and effective resolution are though confusing because as mentioned in
section 2.2.1 the width of the Lifshitz tail is supposed to extend when the
amount of disorder is increased, which sound like a promise for the growth
of effective bandwidth.

The contradiction here comes from our definition of effective bandwidth,
as we focus on the upper bound of statistical resolution and define the
spectral range where the upper bound is below the baseline as the effective
bandwidth. The reason to use the upper bound is to ensure that every
(or at least most of) realization of PhC waveguide at that disorder level is
guaranteed to provide resolutions better than the baseline in the effective
bandwidth. Compare the estimated resolutions plots of σ = 1 nm (Figure
4.9(a)) with σ = 6 nm (Figure 4.9(b)), it is obvious that the upper bound and
lower bound of resolutions get more separated in σ = 6 nm situation, which
means the performance of σ = 6 nm devices becomes much more unstable.
Pay attention to the crossover of lower bound and baseline in Figure 4.9(a)
and Figure 4.9(b), it is the extended lower bound that refers to the actual
broadened Lifshitz tail. Furthermore, as can be seen from Figure 2.7(c), when
the Lifshitz tail width increases with the amount of disorder, the localized
modes becomes more and more diffused in spectrum for an individual test
subject, which means the characteristic patterns become sparse in spectral
domain and lowers the resolution of the spectrometer.

However, consider the fact that the localization length decreases with
increasing amount of disorder, high disorder level might have some
advantages at shorter section lengths. Figure 4.10(c) plots the effective
bandwidths and effective averaged resolutions of a 40a long PhC waveguide
with different amount of disorder. The best resolution is at σ = 3 nm, which
matches our guess. Compare the details of estimated resolutions of σ = 1
nm and σ = 3 nm in Figure 4.10(a) and (b), the better effective resolution
of σ = 3 nm is mainly due to the reduced effective bandwidth, caused by
larger fluctuations of resolution. Nonetheless, the lower bound of σ = 3 nm
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has lower minimum value than σ = 1 nm, which could be the consequence
of shorter localization length.

In conclusion, as the disorder level increases, the increased fluctuations in
band structure cause more unstable resolutions which shorten the effective
bandwidth, and the spread of Anderson localized modes reduce the
averaged resolution. Although stronger localization are found in PhC
waveguides with high disorder level, the small amount of disorder is
preferable for the stable performance when disordered PhC waveguides
are used as parts of reconstructive spectrometers. However, the shorter
localization length of high disorder level may contain the potential to help
build chirped PhC waveguide with shorter section length, thus miniaturize
the footprint of the spectrometer.
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Chapter 5

Summary and Outlook

5.1 Summary

In summary, I introduced an on-chip spectrometer prototype designed by
Tanabe Lab, which uses simple and low-cost photonic crystal structures and
utilizes random fabrication errors to enhance resolution. My investigation
on performance analysis at varying geometry parameters shows that under
the disorder level of σ = 2 nm, single section length should not exceed
the localization length around 120a, and for a chirped waveguide with total
length of 120a, the total reduction rate is optimal around 0.5% per section to
ensure high resolution. For a more straightforward presentation, with the
lattice constant a = 420 nm and a W1 PhC waveguide (waveguide width
727.461 nm) as the first section, if we set the section length as 60a (25.2 µm),
reduction rate of 0.5% per section (3.637 nm per section), 20 sections in total,
we can expect a spectrometer with a resolution around 0.3 nm, a bandwidth
around 93.3 nm, and a total length of chirped waveguide of 0.504 mm, under
the assumption of a linearly increase of effective bandwidth with the total
length.

The investigation of disorder level indicates that photonic crystal
waveguides with large amount of disorder are not suitable for building
spectrometer due to their unstable performance, while the disorder level
of σ = 2 nm is reliable and matches state-of-the-art fabrication techniques.
There is a possibility that the device length can be shorten with a slightly
higher disorder level like σ = 3 nm, which requires further research.

5.2 Future works and outlook

The biggest obstacle in this work is the long simulation time with FDTD
method. On the six-core desktop computer "hpc03" from Tanabe Lab, it takes
about 16 minutes for a single run of a 40a-long structure, about 180 minutes
for a single run of a 120a-long structure, about 520 minutes for a single run
of a 240a-long structure, with a 6 threads multiprocessing setting. While
in practical chips, the chirped PhC waveguide could have a total length
20×80a = 1600a, the exponentially growth of simulation time hinders us
from researching longer structures by numerical method. Besides, many
compromises are made in the simulation setting to save time and gain more
data. The coupling section connecting the rectangular waveguide and the
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PhC waveguide is omitted to reduce the simulation domain, which affects
the coupling efficiency of wavelengths close to band edge, especially those in
evanescent regime, so their Anderson localization are most likely suppressed
in simulations. Also, the five rows of photonic crystal holes on both sides
of the line defect are actually not enough to confine light in transverse
directions, which increase the propagation losses.

The best solution is to find the simulation method with higher efficiency.
The Bloch mode expansion method mentioned in Savona’s work [31] seems
attractive as it is claimed that a 1024a-long W1 PhC waveguide can be
simulated within a few hours on a desktop computer. However, this method
can only calculate the eigenmodes so I am not sure it can simulate the time
variant propagating of light in waveguide and the steady-states field that
we are interested in. Compared with the overlong FDTD simulation time,
fabricating new chips and testing the performances experimentally is a more
reliable solution.

As for the commercial application of the chirped PhC waveguide
spectrometer, there is a long distance. One essential topic is the integration of
sensor unit. We can continue the current method by integrating the infrared
camera and lens into a package with chirped PhC waveguide chip, or use
probes on top the chip to collect scattered light like the SWIFTS shown in
Ref. [21].
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